物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
11期
2063-2070
,共8页
徐坤%冯杰%褚绮%张丽丽%李文英
徐坤%馮傑%褚綺%張麗麗%李文英
서곤%풍걸%저기%장려려%리문영
噻吩%氮化钼%加氢脱硫%反应机理%密度泛函理论
噻吩%氮化鉬%加氫脫硫%反應機理%密度汎函理論
새분%담화목%가경탈류%반응궤리%밀도범함이론
Thiophene%Molybdenum nitride%Hydrodesulfurization%Reaction mechanism%Density functional theory
利用密度泛函理论研究了γ-Mo2N(100)表面上的噻吩加氢脱硫(HDS)过程.噻吩在γ-Mo2N(100)表面上不同作用形式的结构优化结果显示,η5-Mo2N吸附构型最稳定,具有最大的吸附能(-0.56 eV),此时噻吩通过S原子与Mo2原子相连平行表面吸附在四重空位(hcp位). H原子和噻吩在hcp位发生稳定共吸附, hcp位是噻吩HDS的活性位点.噻吩在γ-Mo2N(100)表面进行直接脱硫反应, HDS过程分为S原子脱除和C4产物加氢饱和两部分.过渡态搜索确定了HDS最可能的反应机理及中间产物,首个H原子的反应需要最大的活化能(1.69 eV),是噻吩加氢脱硫的控速步骤.伴随H原子的不断加入,噻吩在γ-Mo2N(100)表面上优先生成―SH和丁二烯,随后―SH加氢生成H2S,丁二烯加氢饱和生成2-丁烯和丁烷.由于较弱的吸附, H2S、2-丁烯和丁烷很容易在γ-Mo2N(100)表面脱附成为产物.
利用密度汎函理論研究瞭γ-Mo2N(100)錶麵上的噻吩加氫脫硫(HDS)過程.噻吩在γ-Mo2N(100)錶麵上不同作用形式的結構優化結果顯示,η5-Mo2N吸附構型最穩定,具有最大的吸附能(-0.56 eV),此時噻吩通過S原子與Mo2原子相連平行錶麵吸附在四重空位(hcp位). H原子和噻吩在hcp位髮生穩定共吸附, hcp位是噻吩HDS的活性位點.噻吩在γ-Mo2N(100)錶麵進行直接脫硫反應, HDS過程分為S原子脫除和C4產物加氫飽和兩部分.過渡態搜索確定瞭HDS最可能的反應機理及中間產物,首箇H原子的反應需要最大的活化能(1.69 eV),是噻吩加氫脫硫的控速步驟.伴隨H原子的不斷加入,噻吩在γ-Mo2N(100)錶麵上優先生成―SH和丁二烯,隨後―SH加氫生成H2S,丁二烯加氫飽和生成2-丁烯和丁烷.由于較弱的吸附, H2S、2-丁烯和丁烷很容易在γ-Mo2N(100)錶麵脫附成為產物.
이용밀도범함이론연구료γ-Mo2N(100)표면상적새분가경탈류(HDS)과정.새분재γ-Mo2N(100)표면상불동작용형식적결구우화결과현시,η5-Mo2N흡부구형최은정,구유최대적흡부능(-0.56 eV),차시새분통과S원자여Mo2원자상련평행표면흡부재사중공위(hcp위). H원자화새분재hcp위발생은정공흡부, hcp위시새분HDS적활성위점.새분재γ-Mo2N(100)표면진행직접탈류반응, HDS과정분위S원자탈제화C4산물가경포화량부분.과도태수색학정료HDS최가능적반응궤리급중간산물,수개H원자적반응수요최대적활화능(1.69 eV),시새분가경탈류적공속보취.반수H원자적불단가입,새분재γ-Mo2N(100)표면상우선생성―SH화정이희,수후―SH가경생성H2S,정이희가경포화생성2-정희화정완.유우교약적흡부, H2S、2-정희화정완흔용역재γ-Mo2N(100)표면탈부성위산물.
The hydrodesulfurization (HDS) of thiophene on anγ-Mo2N(100) surface was investigated by density functional theory (DFT) and different configurations of thiophene onγ-Mo2N(100) surface were considered. After geometric optimization, it was confirmed that theη5-Mo2N configuration was the most stable adsorption model with an adsorption energy of-0.56 eV, where thiophene absorbed on 4-fold hcp vacant sites paral el to the surface with the S atom bonded to a Mo2 atom. The stable coadsorption of H atoms and thiophene on hcp sites showed that the hcp site is the active site for thiophene HDS onγ-Mo2N(100). A direct desulfurization reaction pathway in HDS of thiophene dominated the process on theγ-Mo2N(100) surface, which could be divided into the removal of the S atom and the hydrogenation saturation of C4 species. To identify the intermediate products and the most probable reaction mechanism of thiophene HDS, a transition state search was carried out. The results indicated that the reaction of the first H atom required an activation energy of 1.69 eV, which was the rate-determining step in the HDS of thiophene. The thiol group (―SH) and butadiene were preferential y formed after hydrogenation of thiophene, and―SH detached from mercaptan was the intermediate of H2S. 2-Butene and butane were the products of the hydrogenation saturation of butadiene. H2S, 2-butene, and butane were easily desorbed fromγ-Mo2N(100) to give the products because of weak adsorption.