物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
11期
2043-2054
,共12页
吴选军%赵鹏%方继敏%王杰%刘保顺%蔡卫权
吳選軍%趙鵬%方繼敏%王傑%劉保順%蔡衛權
오선군%조붕%방계민%왕걸%류보순%채위권
多孔芳香骨架材料%掺杂%储氢%原子电荷%分子模拟
多孔芳香骨架材料%摻雜%儲氫%原子電荷%分子模擬
다공방향골가재료%참잡%저경%원자전하%분자모의
Porous aromatic framework%Doping%Hydrogen storage%Atomic charge%Molecular simulation
基于PAF-301分子模型通过Li掺杂或B取代等模式设计了几种新型多孔芳香骨架(PAFs)材料,采用量子力学和分子力学方法对新材料的储氢性能进行研究。由量子力学计算得到了不同分子片段与H2之间的结合能,并结合DDEC方法计算了各分子片段的原子电荷分布。利用巨正则蒙特卡洛(GCMC)模拟方法计算了77和298 K下H2在不同PAFs材料中的吸附平衡性质。结果表明, H2直接与苯环的结合能较低,但掺杂Li原子能够提高H2与六元环的结合能,同时Li原子体现出较高的正电性质, B原子取代苯环中的两个C原子后,使得原有C原子电负性增强;77 K下PAF-301Li具有最高的储氢性能,而PAF-C4B2H4-Li2-Si和PAF-C4B2H4-Li2-Ge体现出较好的常温储氢性能,各种材料的常温储氢性能远低于其低温储氢性能。通过77 K下H2在PAFs材料中的等位能面分布和吸附平衡质心密度分布对H2在PAFs材料中的优先吸附位置进行分析,发现在PAF-301和PAF-301Li骨架中,由于中心能量较低的等位能区域范围较宽, H2在其中存在四个明显的吸附高密度分布区域,而其它三种PAFs晶胞中心能量较低的等位能区域范围较窄,使得H2在其中只存在两个明显的吸附高密度分布区域。
基于PAF-301分子模型通過Li摻雜或B取代等模式設計瞭幾種新型多孔芳香骨架(PAFs)材料,採用量子力學和分子力學方法對新材料的儲氫性能進行研究。由量子力學計算得到瞭不同分子片段與H2之間的結閤能,併結閤DDEC方法計算瞭各分子片段的原子電荷分佈。利用巨正則矇特卡洛(GCMC)模擬方法計算瞭77和298 K下H2在不同PAFs材料中的吸附平衡性質。結果錶明, H2直接與苯環的結閤能較低,但摻雜Li原子能夠提高H2與六元環的結閤能,同時Li原子體現齣較高的正電性質, B原子取代苯環中的兩箇C原子後,使得原有C原子電負性增彊;77 K下PAF-301Li具有最高的儲氫性能,而PAF-C4B2H4-Li2-Si和PAF-C4B2H4-Li2-Ge體現齣較好的常溫儲氫性能,各種材料的常溫儲氫性能遠低于其低溫儲氫性能。通過77 K下H2在PAFs材料中的等位能麵分佈和吸附平衡質心密度分佈對H2在PAFs材料中的優先吸附位置進行分析,髮現在PAF-301和PAF-301Li骨架中,由于中心能量較低的等位能區域範圍較寬, H2在其中存在四箇明顯的吸附高密度分佈區域,而其它三種PAFs晶胞中心能量較低的等位能區域範圍較窄,使得H2在其中隻存在兩箇明顯的吸附高密度分佈區域。
기우PAF-301분자모형통과Li참잡혹B취대등모식설계료궤충신형다공방향골가(PAFs)재료,채용양자역학화분자역학방법대신재료적저경성능진행연구。유양자역학계산득도료불동분자편단여H2지간적결합능,병결합DDEC방법계산료각분자편단적원자전하분포。이용거정칙몽특잡락(GCMC)모의방법계산료77화298 K하H2재불동PAFs재료중적흡부평형성질。결과표명, H2직접여분배적결합능교저,단참잡Li원자능구제고H2여륙원배적결합능,동시Li원자체현출교고적정전성질, B원자취대분배중적량개C원자후,사득원유C원자전부성증강;77 K하PAF-301Li구유최고적저경성능,이PAF-C4B2H4-Li2-Si화PAF-C4B2H4-Li2-Ge체현출교호적상온저경성능,각충재료적상온저경성능원저우기저온저경성능。통과77 K하H2재PAFs재료중적등위능면분포화흡부평형질심밀도분포대H2재PAFs재료중적우선흡부위치진행분석,발현재PAF-301화PAF-301Li골가중,유우중심능량교저적등위능구역범위교관, H2재기중존재사개명현적흡부고밀도분포구역,이기타삼충PAFs정포중심능량교저적등위능구역범위교착,사득H2재기중지존재량개명현적흡부고밀도분포구역。
Several new porous aromatic frameworks (PAFs) were designed by Li doping or B substitution based on the PAF-301 molecular model. The hydrogen storage capacities of these materials were investigated using quantum mechanics and molecular mechanics methods. First, the binding energies between H2 and the different molecular fragments were calculated using quantum mechanics, and the atomic charge distributions of the molecular fragments were calculated by the density-derived electrostatic and chemical charge (DDEC) method. Then, the adsorption equilibrium properties of H2 on the different PAFs were calculated at 77 and 298 K using grand canonical Monte Carlo (GCMC) simulations. The results indicate that the binding energy between H2 and benzene without Li doping is poor, while the binding energies between H2 and Li-doped six-member rings are improved. Li atoms doped into the benzene ring result in higher positive charges, and the electronegativity of the original carbon atoms in the benzene ring increase after its two carbon atoms are replaced with two boron atoms. Among these new materials, PAF-301Li has the highest hydrogen storage capacity at 77 K, while PAF-C4B2H4-Li2-Si and PAF-C4B2H4-Li2-Ge have better hydrogen storage capacities at room temperature than at 77 K. However, the hydrogen storage capacities of these various materials at room temperature are far below the capacities at cryogenic temperature. The preferential adsorption sites for H2 on the PAFs at 77 K were analyzed through the potential energy surfaces and mass center density distribution of the adsorption equilibrium. It was found that there are four obvious high-density adsorption regions in the frameworks of PAF-301 and PAF-301Li because of their wide low-energy regions in the crystal center, while there are only two distinct high-density adsorption regions in the other three PAFs because of their narrow low-energy regions in the unit cel center.