物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
12期
2283-2290
,共8页
吴玥%刘兴泉%张峥%赵红远
吳玥%劉興泉%張崢%趙紅遠
오모%류흥천%장쟁%조홍원
锂离子电池%正极材料%尖晶石锰酸锂%溶胶-凝胶法%Mg%Ti共掺杂
鋰離子電池%正極材料%尖晶石錳痠鋰%溶膠-凝膠法%Mg%Ti共摻雜
리리자전지%정겁재료%첨정석맹산리%용효-응효법%Mg%Ti공참잡
Lithium ion battery%Cathode material%Spinel lithium manganate%Sol-gel method%Mg,Ti co-doping
以氢氧化锂、乙酸锰、硝酸镁和钛酸丁酯为原料,以柠檬酸为螯合剂,采用溶胶-凝胶法制备了二价镁离子与四价钛离子等摩尔共掺杂的尖晶石型锂离子电池正极材料LiMn1.9Mg0.05Ti0.05O4.采用热重分析(TGA), X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)和电化学性能测试(包括循环伏安(CV)和电化学交流阻抗谱(EIS)测试)对所得样品的结构、形貌及电化学性能进行了表征.结果表明:780°C下煅烧12 h得到了颗粒均匀细小的尖晶石型结构的LiMn1.9Mg0.05Ti0.05O4材料,该材料具有良好的电化学性能,在室温下以0.5C倍率充放电,在4.35-3.30 V电位范围内放电比容量达到126.8 mAh?g-1,循环50次后放电比容量仍为118.5 mAh?g-1,容量保持率为93.5%.在55°C高温下循环30次后的放电比容量为111.9 mAh?g-1,容量保持率达到91.9%,远远高于未掺杂的LiMn2O4的容量保存率.二价镁离子与四价钛离子等摩尔共掺杂LiMn2O4,改善了尖晶石锰酸锂的电子导电和离子导电性能,使其倍率性能和高温性能都得到了明显的提高.
以氫氧化鋰、乙痠錳、硝痠鎂和鈦痠丁酯為原料,以檸檬痠為螯閤劑,採用溶膠-凝膠法製備瞭二價鎂離子與四價鈦離子等摩爾共摻雜的尖晶石型鋰離子電池正極材料LiMn1.9Mg0.05Ti0.05O4.採用熱重分析(TGA), X射線衍射(XRD),掃描電子顯微鏡(SEM),透射電子顯微鏡(TEM)和電化學性能測試(包括循環伏安(CV)和電化學交流阻抗譜(EIS)測試)對所得樣品的結構、形貌及電化學性能進行瞭錶徵.結果錶明:780°C下煅燒12 h得到瞭顆粒均勻細小的尖晶石型結構的LiMn1.9Mg0.05Ti0.05O4材料,該材料具有良好的電化學性能,在室溫下以0.5C倍率充放電,在4.35-3.30 V電位範圍內放電比容量達到126.8 mAh?g-1,循環50次後放電比容量仍為118.5 mAh?g-1,容量保持率為93.5%.在55°C高溫下循環30次後的放電比容量為111.9 mAh?g-1,容量保持率達到91.9%,遠遠高于未摻雜的LiMn2O4的容量保存率.二價鎂離子與四價鈦離子等摩爾共摻雜LiMn2O4,改善瞭尖晶石錳痠鋰的電子導電和離子導電性能,使其倍率性能和高溫性能都得到瞭明顯的提高.
이경양화리、을산맹、초산미화태산정지위원료,이저몽산위오합제,채용용효-응효법제비료이개미리자여사개태리자등마이공참잡적첨정석형리리자전지정겁재료LiMn1.9Mg0.05Ti0.05O4.채용열중분석(TGA), X사선연사(XRD),소묘전자현미경(SEM),투사전자현미경(TEM)화전화학성능측시(포괄순배복안(CV)화전화학교류조항보(EIS)측시)대소득양품적결구、형모급전화학성능진행료표정.결과표명:780°C하단소12 h득도료과립균균세소적첨정석형결구적LiMn1.9Mg0.05Ti0.05O4재료,해재료구유량호적전화학성능,재실온하이0.5C배솔충방전,재4.35-3.30 V전위범위내방전비용량체도126.8 mAh?g-1,순배50차후방전비용량잉위118.5 mAh?g-1,용량보지솔위93.5%.재55°C고온하순배30차후적방전비용량위111.9 mAh?g-1,용량보지솔체도91.9%,원원고우미참잡적LiMn2O4적용량보존솔.이개미리자여사개태리자등마이공참잡LiMn2O4,개선료첨정석맹산리적전자도전화리자도전성능,사기배솔성능화고온성능도득도료명현적제고.
An Mg(II) and Ti(IV), iso-molar, co-doped cathode material LiMn1.9Mg0.05Ti0.05O4 for lithium-ion batteries was successful y synthesized via a sol-gel method, using lithium hydroxide, manganese acetate, magnesium nitrate, and butyl titanate as raw materials, and citric acid as a chelating agent. The as-prepared materials were characterized using thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical tests (including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements). The results demonstrated that the cathode material LiMn1.9Mg0.05Ti0.05O4, which was obtained after calcination at 780 °C for 12 h, exhibited a fine microstructure and good electrochemical performance. When cycled at 4.35-3.30 V at room temperature, LiMn1.9Mg0.05Ti0.05O4 delivered a discharge specific capacity of 126.8 mAh?g-1 at 0.5C rate, and maintained a capacity of 118.5 mAh?g-1 after 50 cycles;the capacity retention of this material reached 93.5%. This material showed a discharge-specific capacity of 111.9 mAh?g-1 at 0.5C rate after 30 cycles, when it was cycled at 55 °C;under these conditions the capacity retention reached 91.9%, far superior to the capacity retention of undoped LiMn2O4. The iso-molar co-doping of LiMn2O4 with Mg(II) and Ti(IV) ions led to significant modification of the electronic and ionic conductivity, and increased the rate properties and electrochemical performance of the spinel lithium manganate at elevated temperatures.