物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
12期
2249-2255
,共7页
施炜%张连阳%夏盛杰%倪哲明
施煒%張連暘%夏盛傑%倪哲明
시위%장련양%하성걸%예철명
Pd(111)面%Pt(111)面%Au(111)面%噻吩%吸附
Pd(111)麵%Pt(111)麵%Au(111)麵%噻吩%吸附
Pd(111)면%Pt(111)면%Au(111)면%새분%흡부
Pd(111) surface%Pt(111) surface%Au(111) surface%Thiophene%Adsorption
采用密度泛函理论(DFT),选取DMol3程序模块,对噻吩在M(111)(M=Pd, Pt, Au)表面上的吸附行为进行了探讨。通过对噻吩在不同底物金属上的吸附能、吸附构型、Mul iken电荷布居、差分电荷密度以及态密度的分析发现,噻吩在Pd(111)面上的吸附能最大, Pt(111)面次之, Au(111)面最小。吸附后,噻吩在Au(111)面上的构型几乎保持不变,最终通过S端倾斜吸附于top位;噻吩在Pd(111)及Pt(111)面上发生了折叠与变形,环中氢原子向上翘起,最终通过环平面平行吸附于hol ow位。此外,噻吩环吸附后芳香性遭到了破坏,环中碳原子发生sp3杂化,同时电子逐渐由噻吩向M(111)面发生转移, M(111)面上的部分电子也反馈给了噻吩环中的空轨道,这种协同作用最终导致了噻吩分子稳定吸附于M(111)面。
採用密度汎函理論(DFT),選取DMol3程序模塊,對噻吩在M(111)(M=Pd, Pt, Au)錶麵上的吸附行為進行瞭探討。通過對噻吩在不同底物金屬上的吸附能、吸附構型、Mul iken電荷佈居、差分電荷密度以及態密度的分析髮現,噻吩在Pd(111)麵上的吸附能最大, Pt(111)麵次之, Au(111)麵最小。吸附後,噻吩在Au(111)麵上的構型幾乎保持不變,最終通過S耑傾斜吸附于top位;噻吩在Pd(111)及Pt(111)麵上髮生瞭摺疊與變形,環中氫原子嚮上翹起,最終通過環平麵平行吸附于hol ow位。此外,噻吩環吸附後芳香性遭到瞭破壞,環中碳原子髮生sp3雜化,同時電子逐漸由噻吩嚮M(111)麵髮生轉移, M(111)麵上的部分電子也反饋給瞭噻吩環中的空軌道,這種協同作用最終導緻瞭噻吩分子穩定吸附于M(111)麵。
채용밀도범함이론(DFT),선취DMol3정서모괴,대새분재M(111)(M=Pd, Pt, Au)표면상적흡부행위진행료탐토。통과대새분재불동저물금속상적흡부능、흡부구형、Mul iken전하포거、차분전하밀도이급태밀도적분석발현,새분재Pd(111)면상적흡부능최대, Pt(111)면차지, Au(111)면최소。흡부후,새분재Au(111)면상적구형궤호보지불변,최종통과S단경사흡부우top위;새분재Pd(111)급Pt(111)면상발생료절첩여변형,배중경원자향상교기,최종통과배평면평행흡부우hol ow위。차외,새분배흡부후방향성조도료파배,배중탄원자발생sp3잡화,동시전자축점유새분향M(111)면발생전이, M(111)면상적부분전자야반궤급료새분배중적공궤도,저충협동작용최종도치료새분분자은정흡부우M(111)면。
The adsorption of thiophene on Pd(111), Pt(111), and Au(111) surfaces was investigated by periodic density functional theory (DFT) calculations at the GGA/PW91 level. The results showed that the adsorption energies of thiophene on the different surfaces fol owing the order Pd(111)>Pt(111)>Au(111). The adsorption structure on the Au(111) surface showed almost no change, and the most stable adsorption structure was tilted adsorption on the top site through the S atom of thiophene. For the Pd(111) and Pt(111) surfaces, the most stable adsorption structure was paral el adsorption to the hol ow site through the ring plane of thiophene. After adsorption, the H atom of thiophene moved upward and the structure of thiophene was distorted and folded. The aromaticity of thiophene was disrupted and the C atoms were characteristic of sp3 hybridization. Furthermore, the electrons of the M(111) surfaces and thiophene were redistributed after adsorption. The electron transfer from thiophene to the M(111) surfaces was in the order Pd(111)>Pt(111)>Au(111). The electrons of the M(111) surfaces were also back-denoted to the empty orbitals of the thiophene molecule. These processes eventual y lead to the adsorption of thiophene on the M(111) surfaces.