北京工业大学学报
北京工業大學學報
북경공업대학학보
JOURNAL OF BEIJING POLYTECHNIC UNIVERSITY
2014年
12期
1884-1890
,共7页
冀俊忠%张玲玲%吴晨生%吴金源
冀俊忠%張玲玲%吳晨生%吳金源
기준충%장령령%오신생%오금원
语义权重特征%朴素贝叶斯%文本情感分类%信息增益
語義權重特徵%樸素貝葉斯%文本情感分類%信息增益
어의권중특정%박소패협사%문본정감분류%신식증익
semantic weighted feature%naive Bayesian%text sentiment classification%information gain
针对文档级情感分类的准确率低于普通文本分类的问题,提出一种基于知识语义权重特征的朴素贝叶斯情感分类算法。首先,通过特征选择的方法,对情感词典中的词进行重要度评分并赋予不同权重。然后,基于词典极性的分布信息与文档情感分类的相关性,将情感词的语义权重特征融合到朴素贝叶斯分类中,实现了新算法。在标准中文数据集上的实验结果表明,提出的算法在准确率、召回率和 F1测度值上都优于已有的一些算法。
針對文檔級情感分類的準確率低于普通文本分類的問題,提齣一種基于知識語義權重特徵的樸素貝葉斯情感分類算法。首先,通過特徵選擇的方法,對情感詞典中的詞進行重要度評分併賦予不同權重。然後,基于詞典極性的分佈信息與文檔情感分類的相關性,將情感詞的語義權重特徵融閤到樸素貝葉斯分類中,實現瞭新算法。在標準中文數據集上的實驗結果錶明,提齣的算法在準確率、召迴率和 F1測度值上都優于已有的一些算法。
침대문당급정감분류적준학솔저우보통문본분류적문제,제출일충기우지식어의권중특정적박소패협사정감분류산법。수선,통과특정선택적방법,대정감사전중적사진행중요도평분병부여불동권중。연후,기우사전겁성적분포신식여문당정감분류적상관성,장정감사적어의권중특정융합도박소패협사분류중,실현료신산법。재표준중문수거집상적실험결과표명,제출적산법재준학솔、소회솔화 F1측도치상도우우이유적일사산법。
To solve the drawback that the precision of the document-level sentiment classification is lower than that of the normal text classification, this paper proposes a semantic weight-based Native Bayesian algorithm for text sentiment classification. First, the words in an emotion dictionary were scored and weighted using a feature selection method. Second, based on the correlation between the distribution of dictionary polar and the document-level sentiment classification, the semantic weight feature was merged into naive Bayesian classification and a new algorithm was achieved. Finally, lots of experiments on some standard Chinese data sets were performed. Results show that this algorithm is better than some existing algorithms on precision, recall, and F1-measure.