计算机应用
計算機應用
계산궤응용
COMPUTER APPLICATION
2014年
z2期
83-84,90
,共3页
正态分布%累积分布函数%逼近函数%误差%Fisherz变换
正態分佈%纍積分佈函數%逼近函數%誤差%Fisherz變換
정태분포%루적분포함수%핍근함수%오차%Fisherz변환
normal distribution%cumulative distribution function%approximating function%error%Fisher z transformation
Fisher z变换是一个显式的初等函数,用来逼近累积正态分布函数(标准正态分布的累积分布函数)。介绍了累积正态分布函数逼近函数的评价标准,对有代表性的逼近函数表达式及相应的最大距离误差值进行归纳总结。
Fisher z變換是一箇顯式的初等函數,用來逼近纍積正態分佈函數(標準正態分佈的纍積分佈函數)。介紹瞭纍積正態分佈函數逼近函數的評價標準,對有代錶性的逼近函數錶達式及相應的最大距離誤差值進行歸納總結。
Fisher z변환시일개현식적초등함수,용래핍근루적정태분포함수(표준정태분포적루적분포함수)。개소료루적정태분포함수핍근함수적평개표준,대유대표성적핍근함수표체식급상응적최대거리오차치진행귀납총결。
Fisher z transformation is an explicit elementary function, which can be used to approximate the cumulative normal distribution function ( cumulative distribution function of the standard normal distribution) . The evaluation criteria of approximating the cumulative normal distribution function were introduced. The expressions of some typical approximating functions and the absolute maximal distance error between cumulative normal distribution function and the approximating functions were summarized.