计算机应用
計算機應用
계산궤응용
COMPUTER APPLICATION
2014年
z2期
41-44
,共4页
压缩感知%信号重构%卡尔曼滤波%收敛
壓縮感知%信號重構%卡爾曼濾波%收斂
압축감지%신호중구%잡이만려파%수렴
compressive sensing%signal reconstruction%Kalman filter%convergence
为了提高时变稀疏信号的重构性能,提出了融合压缩感知和卡尔曼滤波的快速收敛重构算法。通过伪测量( PM)技术以及扩展卡尔曼滤波形式的线性化将近似l0范数约束有效地融合到卡尔曼滤波架构中,求解常规的卡尔曼滤波方程,重构出稀疏信号。此外,针对PM阶段的扩展卡尔曼滤波形式,提出了快速收敛算法,有效地保证了算法的收敛和精度。仿真结果表明,相比原有基于卡尔曼滤波的恢复算法,所提算法的重构精度更高、收敛更快。
為瞭提高時變稀疏信號的重構性能,提齣瞭融閤壓縮感知和卡爾曼濾波的快速收斂重構算法。通過偽測量( PM)技術以及擴展卡爾曼濾波形式的線性化將近似l0範數約束有效地融閤到卡爾曼濾波架構中,求解常規的卡爾曼濾波方程,重構齣稀疏信號。此外,針對PM階段的擴展卡爾曼濾波形式,提齣瞭快速收斂算法,有效地保證瞭算法的收斂和精度。倣真結果錶明,相比原有基于卡爾曼濾波的恢複算法,所提算法的重構精度更高、收斂更快。
위료제고시변희소신호적중구성능,제출료융합압축감지화잡이만려파적쾌속수렴중구산법。통과위측량( PM)기술이급확전잡이만려파형식적선성화장근사l0범수약속유효지융합도잡이만려파가구중,구해상규적잡이만려파방정,중구출희소신호。차외,침대PM계단적확전잡이만려파형식,제출료쾌속수렴산법,유효지보증료산법적수렴화정도。방진결과표명,상비원유기우잡이만려파적회복산법,소제산법적중구정도경고、수렴경쾌。
In order to improve the reconstructed performance of time-varying sparse signal, a fast convergent reconstruction algorithm with the fusion of compressive sensing and Kalman filter was proposed. The approximate l0 norm constraint was effectively integrated into Kalman filter framework by Pseudo Measurement ( PM ) technology and the linearization in the form of extended Kalman filter, for solving the conventional Kalman filter equations to reconstruct sparse signal. Furthermore, a fast convergent algorithm was proposed against the form of extended Kalman filter in the stage of PM, to ensure the convergence and high-precision of the algorithm. The simulation demonstrates that the proposed algorithm has higher reconstruction accuracy and faster convergence, compared to the original recovery algorithm based on Kalman filter.