计算机应用
計算機應用
계산궤응용
COMPUTER APPLICATION
2014年
z2期
37-40
,共4页
姚二亮%张国良%汤文俊%徐君
姚二亮%張國良%湯文俊%徐君
요이량%장국량%탕문준%서군
移动机器人%同步定位与地图构建%粒子滤波器%建议分布%粒子群优化
移動機器人%同步定位與地圖構建%粒子濾波器%建議分佈%粒子群優化
이동궤기인%동보정위여지도구건%입자려파기%건의분포%입자군우화
mobile robot%Simultaneous Localization and Mapping ( SLAM )%particle filter%proposal distribution%Particle Swarm Optimization ( PSO)
为了实现在高相似度环境中移动机器人精确高效的自定位与建图,提出了一种基于粒子群优化( PSO)的Rao-Blackwellized粒子滤波同步定位与地图构建( SLAM)算法。利用激光扫描数据校正里程计信息,得到多模态的似然函数,克服相似环境对机器人定位的影响;利用粒子群优化算法提高常规粒子滤波器的估计性能,使得高似然采样集向各个后验概率密度分布取值极大的区域运动,同时保持低似然粒子多样性,从而在一定程度上克服粒子贫乏问题,并且显著地降低精确定位所需的粒子数。对所提算法与Gmapping算法在MIT数据集上进行仿真对比实验,结果表明了该算法的可行性和有效性。
為瞭實現在高相似度環境中移動機器人精確高效的自定位與建圖,提齣瞭一種基于粒子群優化( PSO)的Rao-Blackwellized粒子濾波同步定位與地圖構建( SLAM)算法。利用激光掃描數據校正裏程計信息,得到多模態的似然函數,剋服相似環境對機器人定位的影響;利用粒子群優化算法提高常規粒子濾波器的估計性能,使得高似然採樣集嚮各箇後驗概率密度分佈取值極大的區域運動,同時保持低似然粒子多樣性,從而在一定程度上剋服粒子貧乏問題,併且顯著地降低精確定位所需的粒子數。對所提算法與Gmapping算法在MIT數據集上進行倣真對比實驗,結果錶明瞭該算法的可行性和有效性。
위료실현재고상사도배경중이동궤기인정학고효적자정위여건도,제출료일충기우입자군우화( PSO)적Rao-Blackwellized입자려파동보정위여지도구건( SLAM)산법。이용격광소묘수거교정리정계신식,득도다모태적사연함수,극복상사배경대궤기인정위적영향;이용입자군우화산법제고상규입자려파기적고계성능,사득고사연채양집향각개후험개솔밀도분포취치겁대적구역운동,동시보지저사연입자다양성,종이재일정정도상극복입자빈핍문제,병차현저지강저정학정위소수적입자수。대소제산법여Gmapping산법재MIT수거집상진행방진대비실험,결과표명료해산법적가행성화유효성。
In order to realize a precious and efficient Simultaneous Localization and Mapping ( SLAM) of a mobile robot in the environments with high similarities, a Rao-Blackwellized particle filter SLAM algorithm based on Particle Swarm Optimization ( PSO) was proposed. By correcting odometer information with the laser scanning data and acquiring a multimode likehood function, the influences of the similar environment to the robot localization were overcome. The performance of the generic particle filter was improved by PSO. Particles in high likelihood sampling set moved to the region with posterior probability distribution maximum value, meanwhile the algorithm maintained the multiplicity of the low likehood particles. The improverishment of the particle filter was overcome partly and the number of required particles was reduced observably. The simulation experiments were performed for the comparison of the proposed algorithm with Gmapping algorithm on public MIT datasets, and the feasibility and effectiveness of the algorithm are validated.