南水北调与水利科技
南水北調與水利科技
남수북조여수리과기
SOUTH-TO-NORTH WATER
2014年
1期
118-121
,共4页
防洪调度%智能优化%粒子群算法%混沌思想%变异策略%收敛因子
防洪調度%智能優化%粒子群算法%混沌思想%變異策略%收斂因子
방홍조도%지능우화%입자군산법%혼돈사상%변이책략%수렴인자
flood control operat ion%intelligent optimization%particle swarm optimization%chaotic thoughts%mutation st rategy%convergence factor
水库防洪优化调度模型一般属于高维多峰极值问题,通常采用智能优化算法加以求解。粒子群算法由于其简单易行被广泛应用于水库优化调度中,但是该算法存在局部搜索能力不足、早熟收敛、全局收敛性差等问题。针对这些问题,通过引入 Logistic 方程和变异算子来提高种群的多样性,采用收敛因子来提高算法的收敛速度,并将改进的粒子群算法应用到东圳水库与木兰溪流域的防洪优化调度中,求得关键处河道的最高水位为6.35 m,最大流量为959.2 m3/ s。这一结果与现行规则下的运行结果(最高水位6.93 m,最大流量1139.5 m3/ s)和常规粒子群算法计算结果(最高水位6.51 m,最大流量1066.3 m3/ s)相比,有了很大的改善。
水庫防洪優化調度模型一般屬于高維多峰極值問題,通常採用智能優化算法加以求解。粒子群算法由于其簡單易行被廣汎應用于水庫優化調度中,但是該算法存在跼部搜索能力不足、早熟收斂、全跼收斂性差等問題。針對這些問題,通過引入 Logistic 方程和變異算子來提高種群的多樣性,採用收斂因子來提高算法的收斂速度,併將改進的粒子群算法應用到東圳水庫與木蘭溪流域的防洪優化調度中,求得關鍵處河道的最高水位為6.35 m,最大流量為959.2 m3/ s。這一結果與現行規則下的運行結果(最高水位6.93 m,最大流量1139.5 m3/ s)和常規粒子群算法計算結果(最高水位6.51 m,最大流量1066.3 m3/ s)相比,有瞭很大的改善。
수고방홍우화조도모형일반속우고유다봉겁치문제,통상채용지능우화산법가이구해。입자군산법유우기간단역행피엄범응용우수고우화조도중,단시해산법존재국부수색능력불족、조숙수렴、전국수렴성차등문제。침대저사문제,통과인입 Logistic 방정화변이산자래제고충군적다양성,채용수렴인자래제고산법적수렴속도,병장개진적입자군산법응용도동수수고여목란계류역적방홍우화조도중,구득관건처하도적최고수위위6.35 m,최대류량위959.2 m3/ s。저일결과여현행규칙하적운행결과(최고수위6.93 m,최대류량1139.5 m3/ s)화상규입자군산법계산결과(최고수위6.51 m,최대류량1066.3 m3/ s)상비,유료흔대적개선。
The optimal operation model for flood control of reservoir is a high-dimensional multimodal extremum problem in gen-eral, and intelligent optimization algorithm is usual y used to solve such problems. Part icle swarm opt imization ( PSO) algorithm is widely used in the optimal operation of reservoir due to its simplicit y; however, there are shortcom ings in the PSO algorithm such as premature convergence, low efficiency in global convergence, and deficiency in local search capabilit y. Logistic equation and mut at ion operator are introduced to increase the diversity of population and convergence factor is introduced to improve the convergence rate during the iterative process. The improved PSO algorithm w as applied in the optimal operation for flood con-trol of the Dongzhen Reservoir and Mulanxi Watershed. The resulted showed that the maximum w at er level is 6. 35 m and the maximum flow rate is 959. 2 m3 / s at the pivotal w atercourse. The solutions were much better than that obtained from the pres-ent reservoir control regulations ( maximum w ater level of 6. 93 m and maximum flow rate of 1 139. 5 m3 / s) and that determined by the standard PSO algorithm ( maximum water level of 6. 51 m and maximum flow rate of 1 066. 3 m3 / s) .