农业工程学报
農業工程學報
농업공정학보
2014年
22期
80-86
,共7页
牛晓丽%胡田田%刘亭亭%吴雪%冯璞玉%刘杰%李康%张富仓
牛曉麗%鬍田田%劉亭亭%吳雪%馮璞玉%劉傑%李康%張富倉
우효려%호전전%류정정%오설%풍박옥%류걸%리강%장부창
灌溉%水分%作物%局部水分胁迫程度%根系导水率%根系补偿效应%玉米
灌溉%水分%作物%跼部水分脅迫程度%根繫導水率%根繫補償效應%玉米
관개%수분%작물%국부수분협박정도%근계도수솔%근계보상효응%옥미
irrigation%moisture%crops%partial root zone water stress%root hydraulic conductance%root compensatory effect%maize
局部根区灌溉可以刺激灌水区根系吸水的补偿效应。为了揭示局部灌溉条件下玉米根系补偿效应的动态变化及其影响因素,以聚乙二醇6000(polyethylene glycol 6000,PEG-6000)营养液的渗透势模拟水分胁迫,采用分根技术,通过水培试验模拟局部根区水分胁迫,设置3个水分胁迫程度处理(?0.2、?0.4、?0.6 MPa)和1个对照处理(无营养液),于处理后0、0.25、0.5、1、3、5、7、9 d连续动态监测各根区根系的生长及导水率。结果表明,局部根区受中度及其以下(≥?0.6 MPa)经水分胁迫0.25 d内,所有处理胁迫区根系总导水率和单位根长导水率均与非胁迫区和对照无显著差异(P>0.05)。胁迫持续时间超过0.25 d,胁迫区根系总导水率和单位根长导水率均显著小于非胁迫区(P<0.05),降低程度随水分胁迫程度而增大,各处理间胁迫区根系总导水率的差异随胁迫持续时间延长也逐渐增大。对于非胁迫区,轻度胁迫(?0.2 MPa)持续0.5 d,单位根长导水率较对照高10.11%(P<0.05),1~9 d与对照持平;?0.4 MPa胁迫持续9 d,单位根长导水率为25.08×10-11 m2/(MPa·s),显著高于对照(P<0.05);中度胁迫(?0.6 MPa)持续0.5~3 d单位根长导水率显著小于对照(P<0.05),较对照低19.05%~40.11%,5 d后与对照持平。说明局部根区水分胁迫能有效刺激非胁迫区根系吸水的补偿效应,这种补偿作用在局部水分胁迫0.5 d时就已发生,受到局部水分胁迫程度和持续时间的影响,且根系吸水补偿效应的临界胁迫程度为≥?0.4 MPa。该研究可为更好的发挥局部灌溉在农业节水中的作用提供理论依据。
跼部根區灌溉可以刺激灌水區根繫吸水的補償效應。為瞭揭示跼部灌溉條件下玉米根繫補償效應的動態變化及其影響因素,以聚乙二醇6000(polyethylene glycol 6000,PEG-6000)營養液的滲透勢模擬水分脅迫,採用分根技術,通過水培試驗模擬跼部根區水分脅迫,設置3箇水分脅迫程度處理(?0.2、?0.4、?0.6 MPa)和1箇對照處理(無營養液),于處理後0、0.25、0.5、1、3、5、7、9 d連續動態鑑測各根區根繫的生長及導水率。結果錶明,跼部根區受中度及其以下(≥?0.6 MPa)經水分脅迫0.25 d內,所有處理脅迫區根繫總導水率和單位根長導水率均與非脅迫區和對照無顯著差異(P>0.05)。脅迫持續時間超過0.25 d,脅迫區根繫總導水率和單位根長導水率均顯著小于非脅迫區(P<0.05),降低程度隨水分脅迫程度而增大,各處理間脅迫區根繫總導水率的差異隨脅迫持續時間延長也逐漸增大。對于非脅迫區,輕度脅迫(?0.2 MPa)持續0.5 d,單位根長導水率較對照高10.11%(P<0.05),1~9 d與對照持平;?0.4 MPa脅迫持續9 d,單位根長導水率為25.08×10-11 m2/(MPa·s),顯著高于對照(P<0.05);中度脅迫(?0.6 MPa)持續0.5~3 d單位根長導水率顯著小于對照(P<0.05),較對照低19.05%~40.11%,5 d後與對照持平。說明跼部根區水分脅迫能有效刺激非脅迫區根繫吸水的補償效應,這種補償作用在跼部水分脅迫0.5 d時就已髮生,受到跼部水分脅迫程度和持續時間的影響,且根繫吸水補償效應的臨界脅迫程度為≥?0.4 MPa。該研究可為更好的髮揮跼部灌溉在農業節水中的作用提供理論依據。
국부근구관개가이자격관수구근계흡수적보상효응。위료게시국부관개조건하옥미근계보상효응적동태변화급기영향인소,이취을이순6000(polyethylene glycol 6000,PEG-6000)영양액적삼투세모의수분협박,채용분근기술,통과수배시험모의국부근구수분협박,설치3개수분협박정도처리(?0.2、?0.4、?0.6 MPa)화1개대조처리(무영양액),우처리후0、0.25、0.5、1、3、5、7、9 d련속동태감측각근구근계적생장급도수솔。결과표명,국부근구수중도급기이하(≥?0.6 MPa)경수분협박0.25 d내,소유처리협박구근계총도수솔화단위근장도수솔균여비협박구화대조무현저차이(P>0.05)。협박지속시간초과0.25 d,협박구근계총도수솔화단위근장도수솔균현저소우비협박구(P<0.05),강저정도수수분협박정도이증대,각처리간협박구근계총도수솔적차이수협박지속시간연장야축점증대。대우비협박구,경도협박(?0.2 MPa)지속0.5 d,단위근장도수솔교대조고10.11%(P<0.05),1~9 d여대조지평;?0.4 MPa협박지속9 d,단위근장도수솔위25.08×10-11 m2/(MPa·s),현저고우대조(P<0.05);중도협박(?0.6 MPa)지속0.5~3 d단위근장도수솔현저소우대조(P<0.05),교대조저19.05%~40.11%,5 d후여대조지평。설명국부근구수분협박능유효자격비협박구근계흡수적보상효응,저충보상작용재국부수분협박0.5 d시취이발생,수도국부수분협박정도화지속시간적영향,차근계흡수보상효응적림계협박정도위≥?0.4 MPa。해연구가위경호적발휘국부관개재농업절수중적작용제공이론의거。
Partial root-zone irrigation can stimulate the compensation effect of root water uptake at the irrigated zone. Plants can compensate for water stress in one part of the root zone by taking up water from other parts of the root zone where water is available. This study aimed to identify the dynamics and influencing factors of the compensation effect of maize roots (Zea mays L. hybrid cv. Aoyu No. 3007) under partial root zone irrigation. With the split-root technology, we conducted a hydroponic experiment to analyze the root zone water stress that was simulated by the osmotic potential of a nutrient solution (PEG-6000). There were 3 water stress levels,?0.2 (mild water stress),?0.4,?0.6 MPa (moderate water stress), and a control treatment (control, both sides of the root zone supplied with sufficient water). The root growth and hydraulic conductance of each root zone were measured at 0, 0.25, 0.5, 1, 3, 5, 7 and 9 d after the experiment started. Within 0.25 d after the experiment start, the total hydraulic conductance and the hydraulic conductance per root length between the two root zones in all three treatments and control were not significantly different (P>0.05) if the water stress was less than?0.6 MPa. When the partial water stress lasted more than 0.25 d, the total hydraulic conductance and the hydraulic conductance per root length in stressed root zone were lower (P<0.05) than that in the non-stressed root zone. Compared with non-stressed root zone, the reduction rate of root hydraulic conductance in the stressed root zone was significantly (P<0.05) increased with the increase in partial water stress degree and duration. At five days, compared to the root hydraulic conductance per root length in the non-stressed root zone, the corresponding value in the stressed root zone for the treatments ?0.2, ?0.4 and ?0.6 MPa decreased by 32.70%, 49.90% and 50.97%, respectively. Within 0.25 d after the experiment start, for the treatment ?0.4 and ?0.6 MPa, the total hydraulic conductance in the stressed root zone reduced by 20% and 30% compare with the treatment ?0.2 MPa. Twelve hours after the experiment start, the hydraulic conductance per root length in the non-stressed root zone for the treatment?0.2 MPa increased by 10.11%compared to control, and recovered to control level after 1 d. On the ninth day, the hydraulic conductance per root length in the non-stress root zone for the treatment ?0.4 MPa (25.08×10-11 m2/(MPa·s)) was significantly greater (P<0.05) than that for control, indicating this treatment had an obvious compensation effect on root water uptake. However, the corresponding value for the treatment?0.6 MPa reduced by 19.05%-40.11%after 0.5 d, which recovered to the level of control after 5 d. The results indicated that the compensation effect of root water uptake in the non-stress zone can be effectively stimulated. The compensation effect started to occur at 0.5 d after the experiment start and was affected by the degree and duration of the water stress. ?0.4 MPa was the threshold of partial root zone water stress for effectively stimulating compensatory effect of root water absorption in non-stressed root zone.