郑州大学学报(医学版)
鄭州大學學報(醫學版)
정주대학학보(의학판)
JOURNAL OF ZHENGZHOU UNIVERSITY(MEDICAL SCIENCES)
2014年
6期
818-821,822
,共5页
武建辉%薛玲%郭正军%尹素凤%王国立
武建輝%薛玲%郭正軍%尹素鳳%王國立
무건휘%설령%곽정군%윤소봉%왕국립
径向基函数神经网络%多重线性回归模型%组合模型%煤工尘肺%发病工龄
徑嚮基函數神經網絡%多重線性迴歸模型%組閤模型%煤工塵肺%髮病工齡
경향기함수신경망락%다중선성회귀모형%조합모형%매공진폐%발병공령
radical basis function neural network%multiple linear regression model%combined model%coal workers'pneumoconiosis%onset length of service
目的:研究径向基函数( RBF)神经网络与多重线性回归的组合模型在煤工尘肺发病工龄预测中的性能优劣。方法:采用RBF神经网络模型与多重线性回归模型对研究数据进行分析,对2模型进行加权拟合,采用均方根误差、均方误差、平均相对误差对模型的预测性能进行评价。结果:多重线性回归模型、RBF神经网络模型和组合模型真实值与预测值比较,差异均无统计学意义(t配对=1.552、0.231、0.155,P均>0.05)。多重线性回归模型、RBF神经网络模型和组合模型的均方根误差分别为(1.63±0.11)、(2.45±0.19)和(0.59±0.07)(F=26.141, P<0.001),均方误差分别为(2.6569±0.2412)、(5.9867±0.3804)和(0.3483±0.0653)(F =49.678, P<0.001),平均相对误差分别为(7.15±0.82)%、(15.39±1.25)%和(3.68±0.59)%(F=35.282,P<0.001)。结论:在煤工尘肺发病工龄的预测中,组合模型预测性能优于单一模型。
目的:研究徑嚮基函數( RBF)神經網絡與多重線性迴歸的組閤模型在煤工塵肺髮病工齡預測中的性能優劣。方法:採用RBF神經網絡模型與多重線性迴歸模型對研究數據進行分析,對2模型進行加權擬閤,採用均方根誤差、均方誤差、平均相對誤差對模型的預測性能進行評價。結果:多重線性迴歸模型、RBF神經網絡模型和組閤模型真實值與預測值比較,差異均無統計學意義(t配對=1.552、0.231、0.155,P均>0.05)。多重線性迴歸模型、RBF神經網絡模型和組閤模型的均方根誤差分彆為(1.63±0.11)、(2.45±0.19)和(0.59±0.07)(F=26.141, P<0.001),均方誤差分彆為(2.6569±0.2412)、(5.9867±0.3804)和(0.3483±0.0653)(F =49.678, P<0.001),平均相對誤差分彆為(7.15±0.82)%、(15.39±1.25)%和(3.68±0.59)%(F=35.282,P<0.001)。結論:在煤工塵肺髮病工齡的預測中,組閤模型預測性能優于單一模型。
목적:연구경향기함수( RBF)신경망락여다중선성회귀적조합모형재매공진폐발병공령예측중적성능우렬。방법:채용RBF신경망락모형여다중선성회귀모형대연구수거진행분석,대2모형진행가권의합,채용균방근오차、균방오차、평균상대오차대모형적예측성능진행평개。결과:다중선성회귀모형、RBF신경망락모형화조합모형진실치여예측치비교,차이균무통계학의의(t배대=1.552、0.231、0.155,P균>0.05)。다중선성회귀모형、RBF신경망락모형화조합모형적균방근오차분별위(1.63±0.11)、(2.45±0.19)화(0.59±0.07)(F=26.141, P<0.001),균방오차분별위(2.6569±0.2412)、(5.9867±0.3804)화(0.3483±0.0653)(F =49.678, P<0.001),평균상대오차분별위(7.15±0.82)%、(15.39±1.25)%화(3.68±0.59)%(F=35.282,P<0.001)。결론:재매공진폐발병공령적예측중,조합모형예측성능우우단일모형。
Aim:To study the pros and cons of prediction performance of multiple linear regression model and radical basis function neural network combined model to forecast the work year of coal workers ′pneumoconiosis .Methods:Root of mean square error , mean square predict error , and mean percent error were applied to analyze the predicting outcomes of the three models in order to achieve the aim of comparing the prediction performance .Results:For multiple linear regres-sion model ,radical basis function neural network and the combination model , the difference between true and predicted val-ues were significant(tpaired =1.552,0.231, and 0.155, P>0.05).The root of mean square error of the multiple linear re-gression model,radical basis function neural network and the combination model was respectively (1.63 ±0.11),(2.45 ± 0.19),and (0.59 ±0.07)(F =26.141,P <0.001).The mean square predict error was respectively (2.656 9 ± 0.241 2),(5.986 7 ±0.380 4),and(0.348 3 ±0.065 3)(F=49.678,P<0.001).The mean percent error was respec-tively (7.15 ±0.82)%,(15.39 ±1.25)%,and (3.68 ±0.59)%(F=35.282,P<0.001).Conclusion:In the predic-tion of coal workers′pneumoconiosis incidence seniority , combined forecasting model is superior to a single model .