模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2014年
11期
970-976
,共7页
智能系统%信息物理融合系统%相似度%自决策
智能繫統%信息物理融閤繫統%相似度%自決策
지능계통%신식물리융합계통%상사도%자결책
Intelligent System%Cyber-Physical System%Similarity%Self-Decision
信息物理融合系统( CPS)应用日趋广泛,如何使系统自主捕捉到复杂状态变化并做出相应动作是CPS的核心问题之一。针对此关键问题,结合强化学习算法提出一种基于相似度计算的CPS自决策方法( SCBRLA)。该方法首先提取系统特征和系统目标状态特征,然后通过计算系统当前状态与目标状态的相似度决定采取相应动作及其顺序。该方法可较好地用于分析CPS服务在受到攻击时,系统采取的自适应决策。仿真结果表明该方法能够帮助CPS系统实现自决策,且与传统算法相比能获得更快的响应速度。
信息物理融閤繫統( CPS)應用日趨廣汎,如何使繫統自主捕捉到複雜狀態變化併做齣相應動作是CPS的覈心問題之一。針對此關鍵問題,結閤彊化學習算法提齣一種基于相似度計算的CPS自決策方法( SCBRLA)。該方法首先提取繫統特徵和繫統目標狀態特徵,然後通過計算繫統噹前狀態與目標狀態的相似度決定採取相應動作及其順序。該方法可較好地用于分析CPS服務在受到攻擊時,繫統採取的自適應決策。倣真結果錶明該方法能夠幫助CPS繫統實現自決策,且與傳統算法相比能穫得更快的響應速度。
신식물리융합계통( CPS)응용일추엄범,여하사계통자주포착도복잡상태변화병주출상응동작시CPS적핵심문제지일。침대차관건문제,결합강화학습산법제출일충기우상사도계산적CPS자결책방법( SCBRLA)。해방법수선제취계통특정화계통목표상태특정,연후통과계산계통당전상태여목표상태적상사도결정채취상응동작급기순서。해방법가교호지용우분석CPS복무재수도공격시,계통채취적자괄응결책。방진결과표명해방법능구방조CPS계통실현자결책,차여전통산법상비능획득경쾌적향응속도。
Cyber-Physical systems ( CPS ) are getting more and more popular. How to make the system automatically capture the changes of complex statuses and take proper actions responding to the changes is one of the key problems of CPS. Combining with the reinforcement learning algorithm, a novel self-decision algorithm of CPS based on similarity computation, called Similarity Computation Based on Reinforcement Learning Algorithm( SCBRLA) , is proposed to solve this problem. In this algorithm, the features of both system and system targets are firstly extracted, and then the similarities of current system state and target states are computed. Based on the computation result, system takes corresponding actions and decides the execution order of those actions. The proposed algorithm can be well used to analyze strategies of system self-decision when it receives attacks. The simulation results show that the proposed algorithm can help systems realize self-decision, and it has faster response speed compared with traditional method.