中华围产医学杂志
中華圍產醫學雜誌
중화위산의학잡지
CHINESE JOURNAL OF PERINATAL MEDICINE
2014年
12期
858-862
,共5页
张凯%王利%谢利娟%朱建幸
張凱%王利%謝利娟%硃建倖
장개%왕리%사리연%주건행
高氧症%支气管肺发育不良%妊娠蛋白质类
高氧癥%支氣管肺髮育不良%妊娠蛋白質類
고양증%지기관폐발육불량%임신단백질류
Hyperoxia%Bronchopulmonary dysplasia%Pregnancy proteins
目的:探讨85%高氧暴露对新生大鼠肺组织胎盘生长因子(placental growth factor,PlGF)表达的影响,以及PlGF与支气管肺发育不良的关系。方法将48只新生足月Sprague-Dawley大鼠随机分为空气组和高氧组,各24只。空气组大鼠生后置于通有空气的饲养箱内,高氧组大鼠生后12 h内置于持续通有85%氧气的饲养箱内。分别于空气或高氧环境干预3、5和7 d后处死各组大鼠(每次8只),取大鼠肺组织观察病理表现,并计数肺组织终末空腔数目及肺泡次级间隔数目;采用荧光定量聚合酶链反应技术及Western印迹技术检测肺组织PlGF mRNA和蛋白的表达水平。采用配对t检验进行统计学分析。结果与空气组比较,高氧组大鼠各时间点肺组织病理表现为炎症细胞浸润、肺泡结构简单化、肺泡数目减少、肺泡腔增大、肺泡间隔增厚。高氧组干预3 d后肺组织终末空腔数目和肺泡次级间隔数目与空气组比较差异均无统计学意义(P值均>0.05);高氧组干预5、7 d后肺组织终末空腔数目分别为(23.6±8.2)、(28.5±9.2)个,均低于空气组[(33.1±6.2)、(38.4±10.1)个](t值分别为1.91、2.53,P值均<0.05);肺泡次级间隔数目分别为(56.0±12.2)、(75.4±12.2)个,均低于空气组[(78.3±8.2)、(126.1±10.2)个](t值分别为2.14、2.72,P值均<0.05)。高氧组干预3、5、7 d后肺组织PlGF mRNA的表达水平分别为1.16±0.17、1.34±0.15、1.65±0.19,均高于空气组(0.65±0.21、0.47±0.11、0.46±0.17)(t值分别为1.93、2.55、2.79,P值均<0.05)。高氧组干预3 d后肺组织PlGF蛋白的表达水平为0.24±0.17,高于空气组(0.09±0.01)(t=2.44,P<0.05),干预5、7 d后肺组织PlGF蛋白的表达水平与空气组比较差异无统计学意义(P值均>0.05)。结论85%氧暴露可以引起新生大鼠肺组织PlGF表达上调,可能与支气管肺发育不良中肺组织血管发育障碍有关。PlGF的高表达可能是支气管肺发育不良的发生机制及代偿。
目的:探討85%高氧暴露對新生大鼠肺組織胎盤生長因子(placental growth factor,PlGF)錶達的影響,以及PlGF與支氣管肺髮育不良的關繫。方法將48隻新生足月Sprague-Dawley大鼠隨機分為空氣組和高氧組,各24隻。空氣組大鼠生後置于通有空氣的飼養箱內,高氧組大鼠生後12 h內置于持續通有85%氧氣的飼養箱內。分彆于空氣或高氧環境榦預3、5和7 d後處死各組大鼠(每次8隻),取大鼠肺組織觀察病理錶現,併計數肺組織終末空腔數目及肺泡次級間隔數目;採用熒光定量聚閤酶鏈反應技術及Western印跡技術檢測肺組織PlGF mRNA和蛋白的錶達水平。採用配對t檢驗進行統計學分析。結果與空氣組比較,高氧組大鼠各時間點肺組織病理錶現為炎癥細胞浸潤、肺泡結構簡單化、肺泡數目減少、肺泡腔增大、肺泡間隔增厚。高氧組榦預3 d後肺組織終末空腔數目和肺泡次級間隔數目與空氣組比較差異均無統計學意義(P值均>0.05);高氧組榦預5、7 d後肺組織終末空腔數目分彆為(23.6±8.2)、(28.5±9.2)箇,均低于空氣組[(33.1±6.2)、(38.4±10.1)箇](t值分彆為1.91、2.53,P值均<0.05);肺泡次級間隔數目分彆為(56.0±12.2)、(75.4±12.2)箇,均低于空氣組[(78.3±8.2)、(126.1±10.2)箇](t值分彆為2.14、2.72,P值均<0.05)。高氧組榦預3、5、7 d後肺組織PlGF mRNA的錶達水平分彆為1.16±0.17、1.34±0.15、1.65±0.19,均高于空氣組(0.65±0.21、0.47±0.11、0.46±0.17)(t值分彆為1.93、2.55、2.79,P值均<0.05)。高氧組榦預3 d後肺組織PlGF蛋白的錶達水平為0.24±0.17,高于空氣組(0.09±0.01)(t=2.44,P<0.05),榦預5、7 d後肺組織PlGF蛋白的錶達水平與空氣組比較差異無統計學意義(P值均>0.05)。結論85%氧暴露可以引起新生大鼠肺組織PlGF錶達上調,可能與支氣管肺髮育不良中肺組織血管髮育障礙有關。PlGF的高錶達可能是支氣管肺髮育不良的髮生機製及代償。
목적:탐토85%고양폭로대신생대서폐조직태반생장인자(placental growth factor,PlGF)표체적영향,이급PlGF여지기관폐발육불량적관계。방법장48지신생족월Sprague-Dawley대서수궤분위공기조화고양조,각24지。공기조대서생후치우통유공기적사양상내,고양조대서생후12 h내치우지속통유85%양기적사양상내。분별우공기혹고양배경간예3、5화7 d후처사각조대서(매차8지),취대서폐조직관찰병리표현,병계수폐조직종말공강수목급폐포차급간격수목;채용형광정량취합매련반응기술급Western인적기술검측폐조직PlGF mRNA화단백적표체수평。채용배대t검험진행통계학분석。결과여공기조비교,고양조대서각시간점폐조직병리표현위염증세포침윤、폐포결구간단화、폐포수목감소、폐포강증대、폐포간격증후。고양조간예3 d후폐조직종말공강수목화폐포차급간격수목여공기조비교차이균무통계학의의(P치균>0.05);고양조간예5、7 d후폐조직종말공강수목분별위(23.6±8.2)、(28.5±9.2)개,균저우공기조[(33.1±6.2)、(38.4±10.1)개](t치분별위1.91、2.53,P치균<0.05);폐포차급간격수목분별위(56.0±12.2)、(75.4±12.2)개,균저우공기조[(78.3±8.2)、(126.1±10.2)개](t치분별위2.14、2.72,P치균<0.05)。고양조간예3、5、7 d후폐조직PlGF mRNA적표체수평분별위1.16±0.17、1.34±0.15、1.65±0.19,균고우공기조(0.65±0.21、0.47±0.11、0.46±0.17)(t치분별위1.93、2.55、2.79,P치균<0.05)。고양조간예3 d후폐조직PlGF단백적표체수평위0.24±0.17,고우공기조(0.09±0.01)(t=2.44,P<0.05),간예5、7 d후폐조직PlGF단백적표체수평여공기조비교차이무통계학의의(P치균>0.05)。결론85%양폭로가이인기신생대서폐조직PlGF표체상조,가능여지기관폐발육불량중폐조직혈관발육장애유관。PlGF적고표체가능시지기관폐발육불량적발생궤제급대상。
Objective To investigate the expression of placental growth factor (PlGF) protein and mRNA in lungs of neonatal rats exposed to 85%hyperoxia, and to establish the relationship between PlGF and bronchopulmonary dysplasia (BPD). Methods Forty-eight Sprague–Dawley neonatal rats were randomly exposed to air (control group)(n=24) and 85% hyperoxia (hyperoxia group)(n=24)within 12 h after birth. The rats were sacrificed at 3, 5 and 7 days after exposure (eight at each time) and their lungs were sampled. PlGF protein and mRNA expression in the lungs were determined by Western blot and real-time polymerase chain reaction (PCR) at 3, 5 and 7 days. Left lung tissue was used for morphological and histological observation with hematoxylin and eosin staining. Terminal air spaces and the secondary septa were counted manually under microscope. T-test was applied for statistics. Results Compared with the control group, morphological and histological analysis in the hyperoxia group revealed inflammatory cell infiltration, simplified alveolar structure, less alveolar, alveolar cavity expansion and thickened alveolar septum. Morphometric measurements showed that terminal air spaces and secondary septa were significantly fewer in the hyperoxia rats than those in the control group at 5 and 7 days (terminal air spaces:23.6±8.2 vs 33.1±6.2 and 28.5±9.2 vs 38.4±10.1, t=1.91, 2.53, all P<0.05;secondary septa:56.0±12.2 vs 78.3±8.2 and 75.4±12.2 vs 126.1±10.2, t=2.14, 2.72, all P<0.05). Real-time PCR showed that expression of PlGF mRNA increased significantly on day 3, 5 and 7 in the hyperoxia group compared with the control group (1.16±0.17, 1.34±0.15 and 1.65±0.19 vs 0.65±0.21, 0.47±0.11 and 0.46±0.17, respectively, t=1.93, 2.55, 2.79, all P<0.05). Western blot also showed that expression of PlGF protein on day 3, 5 and 7 in the hyperoxia group increased compared with the control group, but only being significant on day 3 (0.24±0.17 vs 0.09±0.01, t=2.44, P<0.05). Conclusions Hyperoxia (85%) exposure could increase PlGF protein and mRNA expression in the lungs of neonatal rats, likely contributing to pathogenesis of BPD, and might lead to pulmonary vascular developmental disorders in BPD.