计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
24期
266-270
,共5页
热传导系数%量子行为粒子群优化算法%Tikhonov正则化%共轭梯度法%L曲线
熱傳導繫數%量子行為粒子群優化算法%Tikhonov正則化%共軛梯度法%L麯線
열전도계수%양자행위입자군우화산법%Tikhonov정칙화%공액제도법%L곡선
heat transfer coefficient%Quantum-behaved Particle Swarm Optimization(QPSO)%Tikhonov regularization%conjugate gradient method%L-curve
量子行为粒子群优化算法(QPSO)和Tikhonov正则化方法用来求解热传导反问题,近似估计平板随时间变化的热传导系数。由于热传导系数的函数形式是未知的,所以问题可以归结为函数估计问题。求解过程是基于最小二乘模型的,采用的是嵌在平板中的传感器所测量得到的温度,优化过程由QPSO算法来求解。给出了由L曲线方法选择正则参数的详细过程。提出算法的有效性经过了数值实验的验证。传感器的位置和数量对结果的影响也做了研究。给出了与共轭梯度法的比较。
量子行為粒子群優化算法(QPSO)和Tikhonov正則化方法用來求解熱傳導反問題,近似估計平闆隨時間變化的熱傳導繫數。由于熱傳導繫數的函數形式是未知的,所以問題可以歸結為函數估計問題。求解過程是基于最小二乘模型的,採用的是嵌在平闆中的傳感器所測量得到的溫度,優化過程由QPSO算法來求解。給齣瞭由L麯線方法選擇正則參數的詳細過程。提齣算法的有效性經過瞭數值實驗的驗證。傳感器的位置和數量對結果的影響也做瞭研究。給齣瞭與共軛梯度法的比較。
양자행위입자군우화산법(QPSO)화Tikhonov정칙화방법용래구해열전도반문제,근사고계평판수시간변화적열전도계수。유우열전도계수적함수형식시미지적,소이문제가이귀결위함수고계문제。구해과정시기우최소이승모형적,채용적시감재평판중적전감기소측량득도적온도,우화과정유QPSO산법래구해。급출료유L곡선방법선택정칙삼수적상세과정。제출산법적유효성경과료수치실험적험증。전감기적위치화수량대결과적영향야주료연구。급출료여공액제도법적비교。
In this paper, the Quantum-behaved Particle Swarm Optimization(QPSO)with Tikhonov regularization is used to solve the inverse heat conduction problem of estimating the time dependent heat transfer coefficient of a flat plate. The prior information about the functional form of the unknown is unavailable. The estimation is based on transient temperature measurements taken by the sensors imbedded in the plate, which are used in the least square model, minimized by QPSO. The detail of choosing the best regularization parameter by L-curve method is presented. Numerical experiments are per-formed to test the proposed method. Effects of the location and number of sensors are also investigated. Comparison with conjugate gradient method is given as well.