空气动力学学报
空氣動力學學報
공기동역학학보
ACTA AERODYNAMICA SINICA
2014年
6期
748-754
,共7页
虚拟单元方法%壁面函数%自适应笛卡尔网格%湍流
虛擬單元方法%壁麵函數%自適應笛卡爾網格%湍流
허의단원방법%벽면함수%자괄응적잡이망격%단류
ghost cell method%wall function%adaptive Cartesian grid%turbulent flow
以二维高雷诺数可压缩粘性流动问题为背景,提出了一种全新的笛卡尔网格虚拟单元方法。基于壁面函数基本假设,构造了壁面函数-虚拟单元方法(WF-GCM),用于定义湍流壁面边界条件。引入参考点的概念计算虚拟单元上的基本变量与湍流变量值,定义了“非贴体”笛卡尔网格下的湍流壁面边界条件,并通过壁面函数模型修正近壁面单元与界面单元。基于自适应笛卡尔网格体系,采用发展的具有二阶精度的格心格式有限体积求解器,数值模拟了跨音速 RAE2822翼型绕流问题与超音速圆柱绕流问题,计算结果与实验值吻合良好,显示了 WF-GCM 对高雷诺数可压缩粘性问题是有效的。
以二維高雷諾數可壓縮粘性流動問題為揹景,提齣瞭一種全新的笛卡爾網格虛擬單元方法。基于壁麵函數基本假設,構造瞭壁麵函數-虛擬單元方法(WF-GCM),用于定義湍流壁麵邊界條件。引入參攷點的概唸計算虛擬單元上的基本變量與湍流變量值,定義瞭“非貼體”笛卡爾網格下的湍流壁麵邊界條件,併通過壁麵函數模型脩正近壁麵單元與界麵單元。基于自適應笛卡爾網格體繫,採用髮展的具有二階精度的格心格式有限體積求解器,數值模擬瞭跨音速 RAE2822翼型繞流問題與超音速圓柱繞流問題,計算結果與實驗值吻閤良好,顯示瞭 WF-GCM 對高雷諾數可壓縮粘性問題是有效的。
이이유고뢰낙수가압축점성류동문제위배경,제출료일충전신적적잡이망격허의단원방법。기우벽면함수기본가설,구조료벽면함수-허의단원방법(WF-GCM),용우정의단류벽면변계조건。인입삼고점적개념계산허의단원상적기본변량여단류변량치,정의료“비첩체”적잡이망격하적단류벽면변계조건,병통과벽면함수모형수정근벽면단원여계면단원。기우자괄응적잡이망격체계,채용발전적구유이계정도적격심격식유한체적구해기,수치모의료과음속 RAE2822익형요류문제여초음속원주요류문제,계산결과여실험치문합량호,현시료 WF-GCM 대고뢰낙수가압축점성문제시유효적。
This work presents a new Cartesian-based ghost cell method for two-dimensional high Reyn-olds number compressible viscous flows.Based on the six fundamental assumptions used in the law-of-the-wall,a wall function-ghost cell method (WF-GCM)is developed to treat turbulent wall boundary conditions. Reference points are employed to compute primitive variables and turbulent properties at ghost cells.Mean-while,the turbulent variables at the near wall cells and boundary cells are modified by using the wall func-tion model.The turbulent boundary conditions are incorporated into a Reynolds average Navier-Stokes (RANS)finite volume solver that includes the SST k-ω turbulence model.Finally,the transonic flow past a RAE2822 airfoil and supersonic flow past a circle cylinder are simulated with adaptive Cartesian grid.Good agreement with the experimental datas shows the accuracy and efficiency of the presented WF-GCM.