计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
12期
166-171
,共6页
人工蜂群算法%新安江模型%参数估计%寻优策略%保优策略%Nash-Sutcliffe效率系数
人工蜂群算法%新安江模型%參數估計%尋優策略%保優策略%Nash-Sutcliffe效率繫數
인공봉군산법%신안강모형%삼수고계%심우책략%보우책략%Nash-Sutcliffe효솔계수
Artificial Bee Colony ( ABC ) algorithm%Xinanjiang model%parameter estimation%optimization strategy%reserve strategy%Nash-Sutcliffe efficiency coefficient
为提高新安江模型中参数估计的优化精度和算法性能,提出一种改进的人工蜂群( ABC)算法。设计基于最优个体的寻优和保优策略,采用寻优策略提高观察蜂的深度搜索能力,通过保优策略确保侦察蜂不会丢弃当前最优解,从而使算法能够在较短时间内得到收敛。将改进算法应用于新安江模型的参数估计中,并与ABC算法和SCPSO算法的参数估计结果进行对比。实验结果表明,改进算法得到的参数优化精度比ABC算法提高约4%,比SCPSO算法提高约1%,并且具有较快的收敛速度。
為提高新安江模型中參數估計的優化精度和算法性能,提齣一種改進的人工蜂群( ABC)算法。設計基于最優箇體的尋優和保優策略,採用尋優策略提高觀察蜂的深度搜索能力,通過保優策略確保偵察蜂不會丟棄噹前最優解,從而使算法能夠在較短時間內得到收斂。將改進算法應用于新安江模型的參數估計中,併與ABC算法和SCPSO算法的參數估計結果進行對比。實驗結果錶明,改進算法得到的參數優化精度比ABC算法提高約4%,比SCPSO算法提高約1%,併且具有較快的收斂速度。
위제고신안강모형중삼수고계적우화정도화산법성능,제출일충개진적인공봉군( ABC)산법。설계기우최우개체적심우화보우책략,채용심우책략제고관찰봉적심도수색능력,통과보우책략학보정찰봉불회주기당전최우해,종이사산법능구재교단시간내득도수렴。장개진산법응용우신안강모형적삼수고계중,병여ABC산법화SCPSO산법적삼수고계결과진행대비。실험결과표명,개진산법득도적삼수우화정도비ABC산법제고약4%,비SCPSO산법제고약1%,병차구유교쾌적수렴속도。
To improve optimization precision and performance for parameters estimation of Xinanjiang model, the Artificial Bee Colony( ABC) algorithm is introduced and an improved ABC algorithm( BABC) is proposed based on the optimization strategy and reserve strategy of the best individual. In this improved algorithm, optimization strategy is adopted to increase the depth search capabilities of observation bees,and reserve strategy is adopted to ensure scout bees do not discard the current optimal solution,thus the BABC algorithm can converge in a short period of time. The BABC algorithm is applied for parameter estimation of Xinanjiang model and compared with the ABC algorithm and SCPSO algorithm. Experimental results show that the parameters optimization precision of BABC algorithm improves about 4%than ABC algorithm,and improves about 1% than SCPSO algorithm,and BABC algorithm has faster convergence speed.