计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
12期
45-49
,共5页
Hadoop集群%MapReduce框架%自组织映射网络%并行BP神经网络%多模式分类%大数据集
Hadoop集群%MapReduce框架%自組織映射網絡%併行BP神經網絡%多模式分類%大數據集
Hadoop집군%MapReduce광가%자조직영사망락%병행BP신경망락%다모식분류%대수거집
Hadoop cluster%MapReduce frame%Self-organizing Mapping ( SOM ) network%parallel Back Propagation Neural Network( BPNN)%multi-mode classification%large dataset
根据人工神经网络自组织、高度并行以及具有非线性映射能力的特点,提出一种基于云计算的Hadoop多模式并行分类算法。通过将自组织映射网络与多个并行BP神经网络结合,提高多语义模式中复杂分类问题的学习效率和训练精度。采用Hadoop平台下的MapReduce框架实现算法的并行处理,解决大规模数据样本训练时内存开销大、通信耗时长的问题。实验结果表明,与传统单BP多输出分类算法相比,该算法训练速度更快、分类精度更高,在处理大规模数据集时具有实时和高效的特性。
根據人工神經網絡自組織、高度併行以及具有非線性映射能力的特點,提齣一種基于雲計算的Hadoop多模式併行分類算法。通過將自組織映射網絡與多箇併行BP神經網絡結閤,提高多語義模式中複雜分類問題的學習效率和訓練精度。採用Hadoop平檯下的MapReduce框架實現算法的併行處理,解決大規模數據樣本訓練時內存開銷大、通信耗時長的問題。實驗結果錶明,與傳統單BP多輸齣分類算法相比,該算法訓練速度更快、分類精度更高,在處理大規模數據集時具有實時和高效的特性。
근거인공신경망락자조직、고도병행이급구유비선성영사능력적특점,제출일충기우운계산적Hadoop다모식병행분류산법。통과장자조직영사망락여다개병행BP신경망락결합,제고다어의모식중복잡분류문제적학습효솔화훈련정도。채용Hadoop평태하적MapReduce광가실현산법적병행처리,해결대규모수거양본훈련시내존개소대、통신모시장적문제。실험결과표명,여전통단BP다수출분류산법상비,해산법훈련속도경쾌、분류정도경고,재처리대규모수거집시구유실시화고효적특성。
Based on Back Propagation Neural Network(BPNN) characteristics of self-organized,highly parallel and nonlinear mapping capabilities,this paper presents a multi-mode parallel Self-organizing Mapping Multi-back Propagation Neural Network ( SOM-MBP ) classification algorithm under Hadoop. It combinies Self-organizing Mapping ( SOM ) network and BP neural networks to increase the learning efficiency and training accuracy of complex multi-mode parallel classification problems,and uses MapReduce framework on Hadoop to implement parallel processing in order to solve large memory overhead and communication time-consuming problems which are caused by large-scale data training. Experimental results indicate that the algorithm achieves a faster training speed and higher classification accuracy than traditional single BP multi-output classification algorithm. The parallel algorithm exhibits characteristics of real-time and high efficiency in dealing with large-scale data set.