西北工业大学学报
西北工業大學學報
서북공업대학학보
JOURNAL OF NORTHWESTERN POLYTECHNICAL UNIVERSITY
2014年
6期
923-928
,共6页
空间相依%圆形系统%马尔可夫可修系统%可用度
空間相依%圓形繫統%馬爾可伕可脩繫統%可用度
공간상의%원형계통%마이가부가수계통%가용도
针对具有一定拓扑结构的元件相依复杂系统的可靠性分析问题,提出了一类新的元件相依系统———空间相依圆形可修系统。该系统由若干个排列成圆形的元件组成,并且每个元件的运行依赖于空间上与之相邻的元件(“邻居”)。采用马尔可夫过程描述系统的运行过程,定义了四元件和五元件空间相依圆形可修系统的状态,得到了系统的状态转移率矩阵。运用Laplace变换方法,给出了系统的可用度。通过数值示例说明了结论的应用,并把上述2个系统的可用度与元件独立马尔可夫可修系统的可用度进行了对比。
針對具有一定拓撲結構的元件相依複雜繫統的可靠性分析問題,提齣瞭一類新的元件相依繫統———空間相依圓形可脩繫統。該繫統由若榦箇排列成圓形的元件組成,併且每箇元件的運行依賴于空間上與之相鄰的元件(“鄰居”)。採用馬爾可伕過程描述繫統的運行過程,定義瞭四元件和五元件空間相依圓形可脩繫統的狀態,得到瞭繫統的狀態轉移率矩陣。運用Laplace變換方法,給齣瞭繫統的可用度。通過數值示例說明瞭結論的應用,併把上述2箇繫統的可用度與元件獨立馬爾可伕可脩繫統的可用度進行瞭對比。
침대구유일정탁복결구적원건상의복잡계통적가고성분석문제,제출료일류신적원건상의계통———공간상의원형가수계통。해계통유약간개배렬성원형적원건조성,병차매개원건적운행의뢰우공간상여지상린적원건(“린거”)。채용마이가부과정묘술계통적운행과정,정의료사원건화오원건공간상의원형가수계통적상태,득도료계통적상태전이솔구진。운용Laplace변환방법,급출료계통적가용도。통과수치시례설명료결론적응용,병파상술2개계통적가용도여원건독립마이가부가수계통적가용도진행료대비。
Aim.The introduction of the full paper reviews a number of papers on reliability models with dependent units in the open literature and proposes what we believe to be a new model mentioned in the title.The core of Sec-tion 1 consists of:( 1) we present the assumptions of the circular Markov repairable systems with spatial depend-ence;( 2) we put forward the Markov processes associated with the 4-unit and 5-unit circular Markov repairable systems with spatial dependence and define their states as indicated in Fig.1 and Fig.2.Section 2 analyzes the state transitions of the 4-unit and 5-unit systems and obtains the state transition rate matrices corresponding to them.Sec-tion 3 discusses the instantaneous and asymptotic availabilities of the 4-unit and 5-unit systems, which are given by equations (3)-(5).Section 4 presents the numerical examples of the 4-unit and 5-unit systems.The curves of in-stantaneous availabilities are shown in Fig.5 and Fig.6.We obtain the conclusions that:(1) the system with inde-pendent units is more reliable than the circular Markov repairable system with spatial dependence;(2) the 5-unit circular Markov repairable system is more reliable than the 4-unit system.