系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
SYSTEMS ENGINEERING AND ELECTRONICS
2014年
12期
2538-2542
,共5页
李庆武%张伟%周妍%霍冠英%盛惠兴
李慶武%張偉%週妍%霍冠英%盛惠興
리경무%장위%주연%곽관영%성혜흥
图像复原%高维空间几何信息学%粒子群优化算法%图像质量评价
圖像複原%高維空間幾何信息學%粒子群優化算法%圖像質量評價
도상복원%고유공간궤하신식학%입자군우화산법%도상질량평개
image restoration%high-dimensional space geometrical informatics (HDSGI)%particle swarm optimization (PSO)%image quality assessment (IQA)
针对模糊图像高维空间几何信息(high-dimensional space geometrical informatics,HDSGI)复原方法不能自动调节参数的问题,提出一种结合混沌粒子群优化(chaotic particle swarm optimization,CPSO)算法进行模糊图像自适应复原的新方法。HDSGI图像复原算法可以获得清晰的复原图像,但是需要人工调节表征分布曲线的参数,参数选择不合适时复原图像中会出现噪声。将能同时度量图像模糊程度和噪声水平的无参考型图像质量评价指标作为CPSO算法的适应度函数,达到自适应地选择最佳分布曲线的目的,从而可以获得清晰复原图像。复原后的图像的主观视觉评价和定量评价指标均证明了方法的实用性和有效性。
針對模糊圖像高維空間幾何信息(high-dimensional space geometrical informatics,HDSGI)複原方法不能自動調節參數的問題,提齣一種結閤混沌粒子群優化(chaotic particle swarm optimization,CPSO)算法進行模糊圖像自適應複原的新方法。HDSGI圖像複原算法可以穫得清晰的複原圖像,但是需要人工調節錶徵分佈麯線的參數,參數選擇不閤適時複原圖像中會齣現譟聲。將能同時度量圖像模糊程度和譟聲水平的無參攷型圖像質量評價指標作為CPSO算法的適應度函數,達到自適應地選擇最佳分佈麯線的目的,從而可以穫得清晰複原圖像。複原後的圖像的主觀視覺評價和定量評價指標均證明瞭方法的實用性和有效性。
침대모호도상고유공간궤하신식(high-dimensional space geometrical informatics,HDSGI)복원방법불능자동조절삼수적문제,제출일충결합혼돈입자군우화(chaotic particle swarm optimization,CPSO)산법진행모호도상자괄응복원적신방법。HDSGI도상복원산법가이획득청석적복원도상,단시수요인공조절표정분포곡선적삼수,삼수선택불합괄시복원도상중회출현조성。장능동시도량도상모호정도화조성수평적무삼고형도상질량평개지표작위CPSO산법적괄응도함수,체도자괄응지선택최가분포곡선적목적,종이가이획득청석복원도상。복원후적도상적주관시각평개화정량평개지표균증명료방법적실용성화유효성。
For the problem that the high-dimensional space geometrical informatics (HDSGI)blurred image restoration method fails to adjust the parameters automatically,a new blurred image restoration method which combines the HDSGI theory with the chaotic particle swarm optimization (CPSO)algorithm is proposed.Based on the HDSGI theory,the clear restored image can be obtained,while the parameters of the distribution curve in the above method need to be regulated manually and the restored image may result in noise with inappropriate parameters.In this paper,a no-reference quality assessment method,which can measure both noise levels and blurred degrees of images,is adopted as the fitness function of the CPSO algorithm to find the best distribution curve automatically,thus the best restored image is obtained.The subjective vision assessment and the objective quantitative assessment of images demonstrate that the proposed method is practical and effective.