农业环境科学学报
農業環境科學學報
농업배경과학학보
Journal of Agro-Environment Science
2014年
12期
2472-2477
,共6页
宋贺%潘广元%陈清%曹文超%王敬国
宋賀%潘廣元%陳清%曹文超%王敬國
송하%반엄원%진청%조문초%왕경국
设施菜田%痕量气体%N2O排放%NO排放
設施菜田%痕量氣體%N2O排放%NO排放
설시채전%흔량기체%N2O배방%NO배방
greenhouse vegetable cropping system%trace gases%N2O emission%NO emission
为弄清设施菜田垄上和畦上土壤的N2O和NO排放特征,准确估算我国设施菜田痕量气体年排放量,依靠一个田间原位试验,用静态暗箱-气相色谱法和氮氧化物分析仪分别监测了一年设施菜田垄上及畦上土壤的N2O和NO排放通量。研究结果表明畦上和垄上N2O和NO年排放量差异显著。畦上和垄上N2O累积年排放分别为11.60、4.23 kg N·hm-2,NO的累积年排放分别为1.27、0.43 kg N·hm-2;考虑到畦垄面积比为3∶1,修正后设施菜田N2O和NO累积年排放分别为9.65、1.06 kg N·hm-2。因此在气体取样时,取样点在畦上,会分别高估N2O和NO年排放量1.95 kg N·hm-2和0.21 kg N·hm-2。垄上CO2的排放量远低于畦上,间接说明垄上土壤缺乏碳源可能是氮素反硝化的限制因子,施用有机肥时应适当远离垄,以免增大氮素损失。此外,垄是重要无机氮汇,估算氮素平衡和硝酸盐淋洗时,应该给予足够重视。
為弄清設施菜田壟上和畦上土壤的N2O和NO排放特徵,準確估算我國設施菜田痕量氣體年排放量,依靠一箇田間原位試驗,用靜態暗箱-氣相色譜法和氮氧化物分析儀分彆鑑測瞭一年設施菜田壟上及畦上土壤的N2O和NO排放通量。研究結果錶明畦上和壟上N2O和NO年排放量差異顯著。畦上和壟上N2O纍積年排放分彆為11.60、4.23 kg N·hm-2,NO的纍積年排放分彆為1.27、0.43 kg N·hm-2;攷慮到畦壟麵積比為3∶1,脩正後設施菜田N2O和NO纍積年排放分彆為9.65、1.06 kg N·hm-2。因此在氣體取樣時,取樣點在畦上,會分彆高估N2O和NO年排放量1.95 kg N·hm-2和0.21 kg N·hm-2。壟上CO2的排放量遠低于畦上,間接說明壟上土壤缺乏碳源可能是氮素反硝化的限製因子,施用有機肥時應適噹遠離壟,以免增大氮素損失。此外,壟是重要無機氮彙,估算氮素平衡和硝痠鹽淋洗時,應該給予足夠重視。
위롱청설시채전롱상화휴상토양적N2O화NO배방특정,준학고산아국설시채전흔량기체년배방량,의고일개전간원위시험,용정태암상-기상색보법화담양화물분석의분별감측료일년설시채전롱상급휴상토양적N2O화NO배방통량。연구결과표명휴상화롱상N2O화NO년배방량차이현저。휴상화롱상N2O루적년배방분별위11.60、4.23 kg N·hm-2,NO적루적년배방분별위1.27、0.43 kg N·hm-2;고필도휴롱면적비위3∶1,수정후설시채전N2O화NO루적년배방분별위9.65、1.06 kg N·hm-2。인차재기체취양시,취양점재휴상,회분별고고N2O화NO년배방량1.95 kg N·hm-2화0.21 kg N·hm-2。롱상CO2적배방량원저우휴상,간접설명롱상토양결핍탄원가능시담소반초화적한제인자,시용유궤비시응괄당원리롱,이면증대담소손실。차외,롱시중요무궤담회,고산담소평형화초산염림세시,응해급여족구중시。
In greenhouse vegetable cropping systems, elevated N fertilizer inputs may increase N2O and NO emissions from soils. Here N2O and NO emissions from ridged and furrowed soils in a greenhouse were monitored to obtain accurate estimates of annual emissions of trace gases from Chinese greenhouse soils. The results showed that N2O and NO emissions were significantly different between ridged and fur-rowed soils. Annual N2O emissions were 11.60 and 4.23 kg N·hm-2 and annual NO emissions 1.27 and 0.43 kg N·hm-2, from furrowed and ridged soils, respectively. Taking the ratio of furrow to ridge area(3∶1)into account, corrected annual emissions of N2O and NO were 9.65和1.06 kg N·hm-2, respectively. If sampled in furrowed soils, the annual emissions of soil N2O and NO would be overestimated at 1.95 kg N· hm-2 and 0.21 NO kg N·hm-2. The CO2 emissions from ridged soils were far lower than from furrowed soils, implying that C resource might be the factor limiting denitrification. Therefore, manure should be applied away from the ridge to prevent N losses. In addition, ridge soils as a sink of inorganic N should not be ignored when estimating N budgets and nitrate leaching in greenhouse vegetable cropping systems.