应用数学和力学(英文版)
應用數學和力學(英文版)
응용수학화역학(영문판)
APPLIED MATHEMATICS AND MECHANICS(ENGLISH EDITION)
2014年
11期
1411-1420
,共10页
sediment pollutant%turbulence%surface roughness%grain size%vertical dis-tribution%longitudinal desorption
Pollutants release is highly consistent with suspended sediment concentration (SSC) in water column, especially during re-suspension and transport events. The present research focuses on pollutant dynamic release from re-suspended sediment, especially the vertical distribution relationship between them. The sediment erosion experiments on a series of uniform flow are conducted in a circulate flume. Reactive tracer (phosphorus) is used as the contaminant in fine-grained sediments to identify the release characteristic length and time. Experimental results show that the flow condition near-bed depends on the sediment surface roughness. The region with high turbulent intensities corresponds to a high concentration sediment layer. In addition, the SSC decreases with the distance, water depth, and particle grain size. The sediment in a smaller grain size takes much more time to reach equilibrium concentration. Total phosphorus (TP) concentration changes along the water depth as SSC in the initial re-suspension stage, appearing in two obvi-ous concentration regimes: the upper low-concentration layer and the high-concentration near-bottom layer. This layered phenomenon remains for about 3 hours until SSC distri-bution tends to be uniform. Longitudinal desorption plays an important role in long-way transport to reduce the amount of suspended sediment in water column.