山东大学学报(理学版)
山東大學學報(理學版)
산동대학학보(이학판)
JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE)
2014年
12期
1-6,11
,共7页
周文%张书卿%欧阳纯萍%刘志明%阳小华
週文%張書卿%歐暘純萍%劉誌明%暘小華
주문%장서경%구양순평%류지명%양소화
情感分析%情感依存元组%主题情感%倾向关键句
情感分析%情感依存元組%主題情感%傾嚮關鍵句
정감분석%정감의존원조%주제정감%경향관건구
sentiment analysis%emotional dependency tuple%theme emotional%tendency key sentence
以情感依存元组(EDT)作为中文情感表达的基本结构,把新闻文本主题情感倾向性判别任务分成主题识别、情感倾向性分析和主客观分类三个逐层递进的子任务。在主题识别前先对TF-IDF方法进行改进,再结合基于交叉熵方法提取主题特征词,同时考虑了新闻文章标题的主题表征作用,将标题词纳入主题特征集;然后基于空间向量模型计算句子与主题特征向量的相似度,在此基础上考虑句子位置、长度及句子与标题的相似度,计算句子的主题相关度以抽取主题句;最后建立情感依存元组判别模型计算主题句的情感,采用主、客观分类规则筛选出新闻倾向关键句。本方法在COAE 2014评测中各项指标皆逼近最好成绩,表明基于情感依存元组的分类方法具有较高的分类性能。
以情感依存元組(EDT)作為中文情感錶達的基本結構,把新聞文本主題情感傾嚮性判彆任務分成主題識彆、情感傾嚮性分析和主客觀分類三箇逐層遞進的子任務。在主題識彆前先對TF-IDF方法進行改進,再結閤基于交扠熵方法提取主題特徵詞,同時攷慮瞭新聞文章標題的主題錶徵作用,將標題詞納入主題特徵集;然後基于空間嚮量模型計算句子與主題特徵嚮量的相似度,在此基礎上攷慮句子位置、長度及句子與標題的相似度,計算句子的主題相關度以抽取主題句;最後建立情感依存元組判彆模型計算主題句的情感,採用主、客觀分類規則篩選齣新聞傾嚮關鍵句。本方法在COAE 2014評測中各項指標皆逼近最好成績,錶明基于情感依存元組的分類方法具有較高的分類性能。
이정감의존원조(EDT)작위중문정감표체적기본결구,파신문문본주제정감경향성판별임무분성주제식별、정감경향성분석화주객관분류삼개축층체진적자임무。재주제식별전선대TF-IDF방법진행개진,재결합기우교차적방법제취주제특정사,동시고필료신문문장표제적주제표정작용,장표제사납입주제특정집;연후기우공간향량모형계산구자여주제특정향량적상사도,재차기출상고필구자위치、장도급구자여표제적상사도,계산구자적주제상관도이추취주제구;최후건립정감의존원조판별모형계산주제구적정감,채용주、객관분류규칙사선출신문경향관건구。본방법재COAE 2014평측중각항지표개핍근최호성적,표명기우정감의존원조적분류방법구유교고적분류성능。
Taking the emotional dependency tuple (EDT)as the basic structure of Chinese emotional expression,the news text theme emotion recognition task was divided into three progressive sub-tasks:topics identification,emotional tendentiousness analysis,subjective and objective classification.TF-IDF method was improved before identifying the topic,and then the cross-entropy-based method was combined to extract themes feature words.The topic representation of the news title was taken into consideration at the same time,and the title words were put into the theme feature set. The similarity between sentence and the topic feature vector was calculated based on the vector space model.Some sta-tistical rules such as sentence position,sentence length and sentence’s similarity with title were added on this foundation to get topic sentences.Finally,the emotional dependency tuple discriminant model was established to calculate sen-tences emotion and the subjective and objective judgment rule were used to filter out the tendency key sentence.The ap-proaching to the best results of experiment based on COAE 2014 evaluation data shows that the classification method based on the EDT has high classification performance.