轴承
軸承
축승
BEARING
2014年
12期
54-57
,共4页
滚动轴承%故障诊断%雷达图%重心特征%可视化
滾動軸承%故障診斷%雷達圖%重心特徵%可視化
곤동축승%고장진단%뢰체도%중심특정%가시화
rolling bearing%fault diagnosis%radar chart%barycenter feature%visualization
结合可视化技术和隐马尔可夫模型,提出一种基于可视化重心特征提取的轴承故障诊断新模型。首先,将轴承多维音频数据表示为雷达图的形式,再从雷达图中提取可视化的重心特征;然后,将重心特征进行可视化绘制的同时送入HMM分类器进行故障诊断,实现了可视化诊断和自动诊断2种诊断方式。试验结果表明,该方法不仅能够直观显示轴承信号,而且诊断精度可达97%,平均诊断时间为0.08 s。
結閤可視化技術和隱馬爾可伕模型,提齣一種基于可視化重心特徵提取的軸承故障診斷新模型。首先,將軸承多維音頻數據錶示為雷達圖的形式,再從雷達圖中提取可視化的重心特徵;然後,將重心特徵進行可視化繪製的同時送入HMM分類器進行故障診斷,實現瞭可視化診斷和自動診斷2種診斷方式。試驗結果錶明,該方法不僅能夠直觀顯示軸承信號,而且診斷精度可達97%,平均診斷時間為0.08 s。
결합가시화기술화은마이가부모형,제출일충기우가시화중심특정제취적축승고장진단신모형。수선,장축승다유음빈수거표시위뢰체도적형식,재종뢰체도중제취가시화적중심특정;연후,장중심특정진행가시화회제적동시송입HMM분류기진행고장진단,실현료가시화진단화자동진단2충진단방식。시험결과표명,해방법불부능구직관현시축승신호,이차진단정도가체97%,평균진단시간위0.08 s。
A new method of bearing fault diagnosis based on barycenter feature of visualization is presented,combined with visualization and Continuous Gaussian Mixture Hidden Markov Model (HMM).Firstly,the acoustic signal of bearing is showed in radar chart,from which barycenter feature can be exacted;then barycenter feature is visually drawn and sent to HMM classifier for fault diagnosing simultaneously,so as to achieve two diagnosis modes:visual di-agnosis and automatic diagnosis.The result of experiments shows this new method could not only show bearing signal visually,but also has higher diagnosis accuracy (97%)and faster calculating speed (the average time of diagnosis is 0.08 s).