振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2014年
23期
42-46
,共5页
连续小波变换%量子粒子群算法%环境激励%结构模态参数识别%智能优化算法
連續小波變換%量子粒子群算法%環境激勵%結構模態參數識彆%智能優化算法
련속소파변환%양자입자군산법%배경격려%결구모태삼수식별%지능우화산법
continuous wavelet transformation%quantum-behaved particle swarm optimization%ambient excitation%structural modal parameter identification%intelligence optimization algorithm
通过对结构响应进行连续小波变换将多自由度模态参数识别转化为多个单自由度模态参数识别。建立小波骨架理论公式与由结构输出信号计算而得的小波骨架之差为目标函数的优化问题,通过搜索包含于小波骨架理论公式中的模态参数的取值而使目标值最小,从而将优化问题转化为模态参数识别问题。量子粒子群算法是一种基于群体智能理论的优化算法。将量子粒子群算法应用到上述方法中一次性识别出结构的频率、阻尼和振型。最后采用数值模拟的简支梁对该方法进行有效性验证。结果表明,量子粒子群算法结合连续小波变换可以有效地识别环境激励下的结构模态参数。
通過對結構響應進行連續小波變換將多自由度模態參數識彆轉化為多箇單自由度模態參數識彆。建立小波骨架理論公式與由結構輸齣信號計算而得的小波骨架之差為目標函數的優化問題,通過搜索包含于小波骨架理論公式中的模態參數的取值而使目標值最小,從而將優化問題轉化為模態參數識彆問題。量子粒子群算法是一種基于群體智能理論的優化算法。將量子粒子群算法應用到上述方法中一次性識彆齣結構的頻率、阻尼和振型。最後採用數值模擬的簡支樑對該方法進行有效性驗證。結果錶明,量子粒子群算法結閤連續小波變換可以有效地識彆環境激勵下的結構模態參數。
통과대결구향응진행련속소파변환장다자유도모태삼수식별전화위다개단자유도모태삼수식별。건립소파골가이론공식여유결구수출신호계산이득적소파골가지차위목표함수적우화문제,통과수색포함우소파골가이론공식중적모태삼수적취치이사목표치최소,종이장우화문제전화위모태삼수식별문제。양자입자군산법시일충기우군체지능이론적우화산법。장양자입자군산법응용도상술방법중일차성식별출결구적빈솔、조니화진형。최후채용수치모의적간지량대해방법진행유효성험증。결과표명,양자입자군산법결합련속소파변환가이유효지식별배경격려하적결구모태삼수。
Multi-DOF structural modal parameter identification was converted into several single-DOF structural modal parameter identifications by treating structural output data with continuous wavelet transformation.An optimization with an objective function of the difference between theoretical formula of wavelet skeleton and the wavelet skeleton calculated from structural output data was performed.The minimum objective value was gained through searching reasonable modal parameters included in the theoretical formula of wavelet skeleton.And the optimization was turned into structural modal parameter identification. Quantum-behaved particle swarm optimization, as a swarm intelligence optimization algorithm,was used in the structural modal parameter identification above to identify the structural modal parameters (frequencies,damp ratios and modal shapes)simulataneously under ambient excitation.Finally,the modal parameter identification method based on quantum-behaved particle swarm optimization combined with continuous wavelet transformation presented herein was verified with a numerical simulation of a simply-supported beam.The results showed that the methodology herein can effectively be used to identify structural modal parameters under ambient excitation.