振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2014年
24期
8-14
,共7页
自学习阈值%故障预警%非参数检验%beta分布%l1 趋势滤波
自學習閾值%故障預警%非參數檢驗%beta分佈%l1 趨勢濾波
자학습역치%고장예경%비삼수검험%beta분포%l1 추세려파
self-learning threshold%fault early warning%nonparametric test%beta distribution%l1 trend filtering
针对当前机械在线监测系统报警难以实现机械故障早期预警问题,提出一种智能预警方法。基于在线监测系统大量监测数据统计分析,采用动态的自学习阈值算法计算预警阈值,并应用l1趋势滤波技术消除随机误差获取滤波后的趋势。应用动态自学习阈值替代监测系统中的常规报警阈值,比较自学习预警阈值与滤波后的趋势,实现了机械故障早期预警。工程实例表明,该方法能够对机械故障实现早期预警,对预防机械事故的发生有重要的作用。
針對噹前機械在線鑑測繫統報警難以實現機械故障早期預警問題,提齣一種智能預警方法。基于在線鑑測繫統大量鑑測數據統計分析,採用動態的自學習閾值算法計算預警閾值,併應用l1趨勢濾波技術消除隨機誤差穫取濾波後的趨勢。應用動態自學習閾值替代鑑測繫統中的常規報警閾值,比較自學習預警閾值與濾波後的趨勢,實現瞭機械故障早期預警。工程實例錶明,該方法能夠對機械故障實現早期預警,對預防機械事故的髮生有重要的作用。
침대당전궤계재선감측계통보경난이실현궤계고장조기예경문제,제출일충지능예경방법。기우재선감측계통대량감측수거통계분석,채용동태적자학습역치산법계산예경역치,병응용l1추세려파기술소제수궤오차획취려파후적추세。응용동태자학습역치체대감측계통중적상규보경역치,비교자학습예경역치여려파후적추세,실현료궤계고장조기예경。공정실례표명,해방법능구대궤계고장실현조기예경,대예방궤계사고적발생유중요적작용。
Because the alarm mode of current online monitoring systems is hard to realize early-warning a mechanical fault,an early warning methodology was proposed here.Based on statistical analysis of mass data in online monitoring systems,advantages of the dynamic self learning threshold algorithm were taken to calculate a warning threshold,and the l1 trend filtering technology was used to gain the filtered trend eliminating random errors.With dynamic self-learning threshold instead of general alarm threshold in monitoring systems,early warning of a fault could be acquired by comparing the self-learning warning threshold and the filtered trend.It was shown from engineering examples that early warning of a mechanical fault can be achieved with the proposed method,it plays an important role in preventing occurrence of mechanical fault.