噪声与振动控制
譟聲與振動控製
조성여진동공제
NOISE AND VIBRATION CONTROL
2014年
6期
12-16
,共5页
曾祥坤%喻菲菲%王小莉
曾祥坤%喻菲菲%王小莉
증상곤%유비비%왕소리
振动与波%多楔带%参数激励%共振频率%实测分析
振動與波%多楔帶%參數激勵%共振頻率%實測分析
진동여파%다설대%삼수격려%공진빈솔%실측분석
vibration and wave%serpentine belt%parametric excitation%instability frequencies%measuring analysis
以发动机前端附件驱动系统中两相邻轮带段为研究对象,将带简化成轴向运动的粘弹性弦线,建立轴向运动弦线在张力和带速的参数激励下的非线性动力学方程;采用Galerkin方法将非线性运动偏微分方程离散为一组常微分方程,并用摄动法计算引起带横向振动不稳定特性的主/次谐共振频率范围。介绍发动机前端附件驱动系统中轮的角速度和带横向振动的实验装置和测试方法,识别出引起带横向振动不稳定特性的参数激励频率范围,带横向振动不稳定特性的共振频率范围计算值与实验值具有较好的一致性。实验结果表明带参数激励下横向振动的不稳定特性主要发生在带的次谐共振频率范围内;带段伸缩张力幅值越大,带在参数激励下横向振动的主/次谐共振频率范围就越大。
以髮動機前耑附件驅動繫統中兩相鄰輪帶段為研究對象,將帶簡化成軸嚮運動的粘彈性絃線,建立軸嚮運動絃線在張力和帶速的參數激勵下的非線性動力學方程;採用Galerkin方法將非線性運動偏微分方程離散為一組常微分方程,併用攝動法計算引起帶橫嚮振動不穩定特性的主/次諧共振頻率範圍。介紹髮動機前耑附件驅動繫統中輪的角速度和帶橫嚮振動的實驗裝置和測試方法,識彆齣引起帶橫嚮振動不穩定特性的參數激勵頻率範圍,帶橫嚮振動不穩定特性的共振頻率範圍計算值與實驗值具有較好的一緻性。實驗結果錶明帶參數激勵下橫嚮振動的不穩定特性主要髮生在帶的次諧共振頻率範圍內;帶段伸縮張力幅值越大,帶在參數激勵下橫嚮振動的主/次諧共振頻率範圍就越大。
이발동궤전단부건구동계통중량상린륜대단위연구대상,장대간화성축향운동적점탄성현선,건립축향운동현선재장력화대속적삼수격려하적비선성동역학방정;채용Galerkin방법장비선성운동편미분방정리산위일조상미분방정,병용섭동법계산인기대횡향진동불은정특성적주/차해공진빈솔범위。개소발동궤전단부건구동계통중륜적각속도화대횡향진동적실험장치화측시방법,식별출인기대횡향진동불은정특성적삼수격려빈솔범위,대횡향진동불은정특성적공진빈솔범위계산치여실험치구유교호적일치성。실험결과표명대삼수격려하횡향진동적불은정특성주요발생재대적차해공진빈솔범위내;대단신축장력폭치월대,대재삼수격려하횡향진동적주/차해공진빈솔범위취월대。
The serpentine belt between two adjacent pulleys in an engine’s Front End Accessory Drive (FEAD) system is simplified as an axially moving viscoelastic string. Nonlinear dynamical equation is established for investigating the stability of the axially moving string subjected to parametric excitation resulted from tension and translation-speed oscillations. Galerkin method is used to discrete the nonlinear partial differential equations into a group of ordinary differential equations. Perturbation method is used for calculating the primary and secondary instability frequencies of the belt’s transverse vibration. An experiment was carried out for getting the angular velocity of the pulleys and the vibration of the belt in the FEAD system, and the parametric excitation frequencies of the belt’s transverse vibration were identified. The parametric excitation frequencies in the experiment agreed well with those of calculated results. Experiment results show that the instability of belt’s transverse vibration occurs in the regions of belt’s secondary resonant frequencies. When the tensile force of the belt increases, the regions of belt primary and secondary resonant frequencies under the parametric excitation also increase greatly.