噪声与振动控制
譟聲與振動控製
조성여진동공제
NOISE AND VIBRATION CONTROL
2014年
6期
174-177
,共4页
邹龙庆%陈桂娟%邢俊杰%姜楚豪
鄒龍慶%陳桂娟%邢俊傑%薑楚豪
추룡경%진계연%형준걸%강초호
振动与波%往复压缩机%LMD%样本熵%轴承%故障诊断
振動與波%往複壓縮機%LMD%樣本熵%軸承%故障診斷
진동여파%왕복압축궤%LMD%양본적%축승%고장진단
vibration and wave%reciprocating compressor%LMD%sample entropy%bearing%fault diagnosis
针对往复压缩机振动信号的非平稳和非线性特性,提出了基于LMD样本熵与SVM的往复压缩机轴承间隙故障诊断方法。利用具有保形特性的Hermite插值法替代传统LMD中滑动平均法构造均值与包络函数,提高LMD对非平稳信号的分解精度。以改进LMD方法将各状态振动信号分解为一系列PF分量,依据相关性系数选择其中代表故障状态主要信息的PF分量,计算其样本熵形成有效的特征向量。使用SVM作为模式分类器,诊断得出轴承间隙故障类型。同LMD与近似熵方法所提取特征向量进行对比,结果表明本文方法具有更高的识别准确率。
針對往複壓縮機振動信號的非平穩和非線性特性,提齣瞭基于LMD樣本熵與SVM的往複壓縮機軸承間隙故障診斷方法。利用具有保形特性的Hermite插值法替代傳統LMD中滑動平均法構造均值與包絡函數,提高LMD對非平穩信號的分解精度。以改進LMD方法將各狀態振動信號分解為一繫列PF分量,依據相關性繫數選擇其中代錶故障狀態主要信息的PF分量,計算其樣本熵形成有效的特徵嚮量。使用SVM作為模式分類器,診斷得齣軸承間隙故障類型。同LMD與近似熵方法所提取特徵嚮量進行對比,結果錶明本文方法具有更高的識彆準確率。
침대왕복압축궤진동신호적비평은화비선성특성,제출료기우LMD양본적여SVM적왕복압축궤축승간극고장진단방법。이용구유보형특성적Hermite삽치법체대전통LMD중활동평균법구조균치여포락함수,제고LMD대비평은신호적분해정도。이개진LMD방법장각상태진동신호분해위일계렬PF분량,의거상관성계수선택기중대표고장상태주요신식적PF분량,계산기양본적형성유효적특정향량。사용SVM작위모식분류기,진단득출축승간극고장류형。동LMD여근사적방법소제취특정향량진행대비,결과표명본문방법구유경고적식별준학솔。
Due to the non-stationary and nonlinearity characteristics of vibration signal of reciprocating compressors, a fault diagnosis method for bearing fault of reciprocating compressor based on LMD sample entropy and SVM is proposed. To improve the envelope approximation accuracy of local mean and envelope estimation, a cubic Hermite interpolation method, which has excellent conformal characteristic, is used to construct the envelope curves for the extreme points. Vibration signals in each state are decomposed into a series of PF components with the improved LMD method, and the PF components, which contain the main information of the fault state, are chosen according to the correlation coefficient. Sample entropy of the selected PF components is calculated as eigenvectors. Taking SVM as pattern classifier, the type of bearing clearance fault is diagnosed, and the advantage of this method is proved by comparing the eigenvectors extracted by LMD with those by the approximate entropy method.