中国农业资源与区划
中國農業資源與區劃
중국농업자원여구화
CHINA AGRICULTURAL RESOURCES AND REGIONAL PLANNING
2014年
6期
79-84
,共6页
玉米%棉花%识别%雷达%遥感%最小距离法
玉米%棉花%識彆%雷達%遙感%最小距離法
옥미%면화%식별%뢰체%요감%최소거리법
maize%cotton%classification%SAR%remote sensing
利用雷达遥感技术进行作物识别是当前作物遥感监测的研究热点之一,但利用雷达遥感技术进行旱地作物识别的相关研究较少,该文以RADARSAT-2雷达遥感数据对两种旱地作物玉米和棉花进行识别。以河北省枣强县为研究区,对其区域内的玉米和棉花进行识别。首先分析了与卫星过顶时刻同步采集的作物参数与后向散射系数之间的相关性发现,在植株高度、生物量、作物含水量、叶面积指数这四个作物参数中,植株高度与后向散射系数的相关性最大,其次是作物含水量;同时,通过最小距离法应用多时相、多极化雷达遥感数据进行作物识别,其精度可达到85%,通过与资源三号光学遥感数据结合,其作物识别精度提高到了93%。研究结果表明,雷达遥感数据应用于旱地作物识别是可行的,雷达遥感数据与光学遥感数据的结合能提高旱地作物识别的精度。该研究为应用雷达遥感数据进行旱地作物识别提供了参考。
利用雷達遙感技術進行作物識彆是噹前作物遙感鑑測的研究熱點之一,但利用雷達遙感技術進行旱地作物識彆的相關研究較少,該文以RADARSAT-2雷達遙感數據對兩種旱地作物玉米和棉花進行識彆。以河北省棘彊縣為研究區,對其區域內的玉米和棉花進行識彆。首先分析瞭與衛星過頂時刻同步採集的作物參數與後嚮散射繫數之間的相關性髮現,在植株高度、生物量、作物含水量、葉麵積指數這四箇作物參數中,植株高度與後嚮散射繫數的相關性最大,其次是作物含水量;同時,通過最小距離法應用多時相、多極化雷達遙感數據進行作物識彆,其精度可達到85%,通過與資源三號光學遙感數據結閤,其作物識彆精度提高到瞭93%。研究結果錶明,雷達遙感數據應用于旱地作物識彆是可行的,雷達遙感數據與光學遙感數據的結閤能提高旱地作物識彆的精度。該研究為應用雷達遙感數據進行旱地作物識彆提供瞭參攷。
이용뢰체요감기술진행작물식별시당전작물요감감측적연구열점지일,단이용뢰체요감기술진행한지작물식별적상관연구교소,해문이RADARSAT-2뢰체요감수거대량충한지작물옥미화면화진행식별。이하북성조강현위연구구,대기구역내적옥미화면화진행식별。수선분석료여위성과정시각동보채집적작물삼수여후향산사계수지간적상관성발현,재식주고도、생물량、작물함수량、협면적지수저사개작물삼수중,식주고도여후향산사계수적상관성최대,기차시작물함수량;동시,통과최소거리법응용다시상、다겁화뢰체요감수거진행작물식별,기정도가체도85%,통과여자원삼호광학요감수거결합,기작물식별정도제고도료93%。연구결과표명,뢰체요감수거응용우한지작물식별시가행적,뢰체요감수거여광학요감수거적결합능제고한지작물식별적정도。해연구위응용뢰체요감수거진행한지작물식별제공료삼고。
Identification of crop types from SAR remote sensing technology is a hot topic in crop remote sensing field, but there are a few studies on using SAR remote sensing technology to identify dryland crops. The aim of this study was to investigate the usability of RASARSAT-2 SAR data in the two dryland crops including maize and cot-ton. The study area located in Zaoqiang, Hebei province. At first, the correlation analysis of radar backscattering coefficient and crop parameters that were collected timely synchronization with the satellite images time was studied, the results displayed that the following four crop parameters including crop height, biomass, crop water content, leaf area index, plant height were mostly correlation with backscatter coefficients, followed by the crop water con-tent. Then, the dryland crops were classified using the minimum distance method based on the multi-temporal and multi-polarization SAR data, the overall accuracy was 85%. Combined with the ZY-3 hi-resolution optical re-mote sensing imagery, the overall accuracy for dryland crop classification was 93%. The results showed that the i-dentification of dryland crop by SAR remote sensing data was feasible. The combination of SAR remote sensing data and optical remote sensing data can improve the accuracy of the identification of dryland crops. The results of this study can provide useful information for the related research.