山东大学学报(工学版)
山東大學學報(工學版)
산동대학학보(공학판)
JOURNAL OF SHANDONG UNIVERSITY(ENGINEERING SCIENCE)
2014年
6期
15-18,69
,共5页
情感挖掘%分类%倾向性分析%特征选择%情感词典
情感挖掘%分類%傾嚮性分析%特徵選擇%情感詞典
정감알굴%분류%경향성분석%특정선택%정감사전
sentiment mining%classificaiton%orientation analysis%feature-selection%sentiment lexicon
针对情感分类中采用单一特征分类精度不高的问题,提出多特征加权的分类算法:根据扩展的情感词典计算每个词的情感倾向度,经CHI特征选择后,根据情感词的极性强度调整贝叶斯分类模型中该词的正负后验概率,在原值的基础上加上极性强度影响值。实验将该方法和其他3种单特征选择方法在酒店、影视等语料上的分类精度进行了对比,分类精度得到提升。实验结果表明,将词语的情感倾向度的特征融入到分类器中方法,在有效提高情感倾向性分类精度的同时降低了特征维数。
針對情感分類中採用單一特徵分類精度不高的問題,提齣多特徵加權的分類算法:根據擴展的情感詞典計算每箇詞的情感傾嚮度,經CHI特徵選擇後,根據情感詞的極性彊度調整貝葉斯分類模型中該詞的正負後驗概率,在原值的基礎上加上極性彊度影響值。實驗將該方法和其他3種單特徵選擇方法在酒店、影視等語料上的分類精度進行瞭對比,分類精度得到提升。實驗結果錶明,將詞語的情感傾嚮度的特徵融入到分類器中方法,在有效提高情感傾嚮性分類精度的同時降低瞭特徵維數。
침대정감분류중채용단일특정분류정도불고적문제,제출다특정가권적분류산법:근거확전적정감사전계산매개사적정감경향도,경CHI특정선택후,근거정감사적겁성강도조정패협사분류모형중해사적정부후험개솔,재원치적기출상가상겁성강도영향치。실험장해방법화기타3충단특정선택방법재주점、영시등어료상적분류정도진행료대비,분류정도득도제승。실험결과표명,장사어적정감경향도적특정융입도분류기중방법,재유효제고정감경향성분류정도적동시강저료특정유수。
In the traditional classification method,only one feature was considered,that was not good enough for the precision.In order to improve the precision,a classification method based on integrated features was provided.First, the emotional tendency value of one word was calculated according to an extended sentiment dictionary;then after the CHI selection,the weights of the positive and negative emotion word posterior probability in the Bayesian model were adjusted acrodding to its tendency value.In the experiments,four kinds of corpus such as hotel and movie reviews were used,compared with other three methods,the integrated features method was better.The results showed the precision of classification was improved and the dimension of the feature was reduced.