电子显微学报
電子顯微學報
전자현미학보
JOURNAL OF CHINESE ELECTRON MICROSCOPY SOCIETY
2014年
6期
537-542
,共6页
薛向东%张春秋%陈飞%甘雅玲%邹国漳%梁兴杰
薛嚮東%張春鞦%陳飛%甘雅玲%鄒國漳%樑興傑
설향동%장춘추%진비%감아령%추국장%량흥걸
聚集诱导发光%聚集淬灭%扫描电子显微镜%荧光能量共振转移%自组装
聚集誘導髮光%聚集淬滅%掃描電子顯微鏡%熒光能量共振轉移%自組裝
취집유도발광%취집쉬멸%소묘전자현미경%형광능량공진전이%자조장
aggregation induced emission%aggregation caused quench%SEM%fluorescence resonance energy transfer%self-assembly
本实验将自聚发光分子四苯基乙烯( TPE)和聚集淬灭分子阿霉素( DOX)连接为荧光分子复合物( TPE?DOX conjugate, TD),并通过荧光光谱分析和扫描电镜观察结合的方法,对TD纳米聚集体中TPE和DOX的荧光淬灭机制进行了研究。实验发现,在TD分子内,TPE和DOX之间发生了“能量传递接力”的现象,即TPE通过荧光能量共振转移将能量传递给DOX,导致自身荧光发射淬灭;DOX由于TD纳米聚集体的形成,发生了聚集淬灭现象,致使TPE转移的能量和DOX自身的荧光发射均被淬灭,达到一个荧光双淬灭的效果。研究中采用荧光分析与电镜观察结合的方法,阐述了将两种具有相反发光性质的荧光分子在纳米尺度的荧光淬灭机理,为纳米尺度上的分子内荧光淬灭研究提供了理论依据。
本實驗將自聚髮光分子四苯基乙烯( TPE)和聚集淬滅分子阿黴素( DOX)連接為熒光分子複閤物( TPE?DOX conjugate, TD),併通過熒光光譜分析和掃描電鏡觀察結閤的方法,對TD納米聚集體中TPE和DOX的熒光淬滅機製進行瞭研究。實驗髮現,在TD分子內,TPE和DOX之間髮生瞭“能量傳遞接力”的現象,即TPE通過熒光能量共振轉移將能量傳遞給DOX,導緻自身熒光髮射淬滅;DOX由于TD納米聚集體的形成,髮生瞭聚集淬滅現象,緻使TPE轉移的能量和DOX自身的熒光髮射均被淬滅,達到一箇熒光雙淬滅的效果。研究中採用熒光分析與電鏡觀察結閤的方法,闡述瞭將兩種具有相反髮光性質的熒光分子在納米呎度的熒光淬滅機理,為納米呎度上的分子內熒光淬滅研究提供瞭理論依據。
본실험장자취발광분자사분기을희( TPE)화취집쉬멸분자아매소( DOX)련접위형광분자복합물( TPE?DOX conjugate, TD),병통과형광광보분석화소묘전경관찰결합적방법,대TD납미취집체중TPE화DOX적형광쉬멸궤제진행료연구。실험발현,재TD분자내,TPE화DOX지간발생료“능량전체접력”적현상,즉TPE통과형광능량공진전이장능량전체급DOX,도치자신형광발사쉬멸;DOX유우TD납미취집체적형성,발생료취집쉬멸현상,치사TPE전이적능량화DOX자신적형광발사균피쉬멸,체도일개형광쌍쉬멸적효과。연구중채용형광분석여전경관찰결합적방법,천술료장량충구유상반발광성질적형광분자재납미척도적형광쉬멸궤리,위납미척도상적분자내형광쉬멸연구제공료이론의거。
In this paper, tetraphenylethene ( TPE) and doxorubicin ( DOX) were conjugated together, forming a complex fluorescent molecule ( TPE?DOX conjugate, TD) . By evaluating the fluorescence spectra and scanning electron microscopy results, fluorescence quenching mechanism of TPE and DOX in TD nanoaggregates was studied. The experiment results indicated that between TPE and DOX, a “energy transfer relay” phenomenon occurred, i. e. , TPE transferred its emissive energy to DOX through fluorescence resonance energy transfer ( FRET) , leading to its fluorescence emission quenched, and the fluorescence of DOX was also quenched by means of aggregation cause quench, and thus resulting in a “double quenched” fluorescence behavior. By combining scan electron microscopy observation and fluorescence spectra analysis, this paper provided a novel theoretical mechanism for studying nanoscaled fluorescence quenching behaviors.