生态环境学报
生態環境學報
생태배경학보
ECOLOGY AND ENVIRONMENT
2014年
11期
1725-1731
,共7页
吉艳芝%冯万忠%郝晓然%彭亚静%韩鹏辉%马峙英%张丽娟
吉豔芝%馮萬忠%郝曉然%彭亞靜%韓鵬輝%馬峙英%張麗娟
길염지%풍만충%학효연%팽아정%한붕휘%마치영%장려연
施肥模式%土壤硝态氮%小麦-玉米轮作%华北平原
施肥模式%土壤硝態氮%小麥-玉米輪作%華北平原
시비모식%토양초태담%소맥-옥미륜작%화북평원
fertilization mode%soil nitrate nitrogen%the rotation system of wheat and maize%North China Plain
为了探索培育高产粮田的施肥模式,实现氮肥资源的高效利用与环境效益,以华北平原的小麦(Triticum aestivum)-玉米(Zea mays L.)轮作体系作为研究对象,通过2007─2011年4个轮作季,探讨不同的施肥模式对作物产量和土壤硝态氮的影响。试验以处理A(当地传统管理)作为对照,从测土确定施肥量、按作物生长发育明确施肥时期、合理分配各时期的养分配比及增施有机肥等方面改变传统施肥模式,设置3种高产施肥培育模式,分别为处理B(现有高产田推荐管理)、处理C(高肥料投入管理)和处理D(水肥高效管理),进行田间小区试验。4个轮作季的总产量以处理D为最高,达75430 kg·hm-2,其次是处理C为75166 kg·hm-2,当地传统的产量最低。冬小麦季的吸氮量为处理C和D显著高于A处理,分别高出444.78 kg·hm-2和310.20 kg·hm-2,但与处理B无显著差异;处理D在夏玉米季的吸氮量为776.75 kg·hm-2,显著高于处理A。处理B的氮肥偏生产力值最高为38.21,处理D为36.71,处理A和C均为28.33。各处理经过4个轮作季后,土壤硝态氮均在120~160 cm出现累积峰,A、B、C和D的硝态氮峰值分别为58.65、28.98、105.89、45.29 mg·kg-1。在0~100cm土层,处理B的硝态氮累积量达到144.22 kg·hm-2,显著高于处理A、C、D;所有处理在100~200 cm土层均出现较高的硝态氮累积,处理C高达1021.19 kg·hm-2;0~400 cm的土壤硝态氮累积量分别为724.27、711.92、1324.30、730.70 kg·hm-2。处理A、B、C、D在耕层土壤氮素的表观损失分别为1298.95、653.18、1236.39和718.43 kg·hm-2,处理B、D显著低于处理A、C,D和B间差异不显著。因此,处理D是培育高产的理想施肥模式,合理的施肥量、科学的施肥时期以及有机无机的合理配比是达到高产、提高肥效和环境友好的关键。
為瞭探索培育高產糧田的施肥模式,實現氮肥資源的高效利用與環境效益,以華北平原的小麥(Triticum aestivum)-玉米(Zea mays L.)輪作體繫作為研究對象,通過2007─2011年4箇輪作季,探討不同的施肥模式對作物產量和土壤硝態氮的影響。試驗以處理A(噹地傳統管理)作為對照,從測土確定施肥量、按作物生長髮育明確施肥時期、閤理分配各時期的養分配比及增施有機肥等方麵改變傳統施肥模式,設置3種高產施肥培育模式,分彆為處理B(現有高產田推薦管理)、處理C(高肥料投入管理)和處理D(水肥高效管理),進行田間小區試驗。4箇輪作季的總產量以處理D為最高,達75430 kg·hm-2,其次是處理C為75166 kg·hm-2,噹地傳統的產量最低。鼕小麥季的吸氮量為處理C和D顯著高于A處理,分彆高齣444.78 kg·hm-2和310.20 kg·hm-2,但與處理B無顯著差異;處理D在夏玉米季的吸氮量為776.75 kg·hm-2,顯著高于處理A。處理B的氮肥偏生產力值最高為38.21,處理D為36.71,處理A和C均為28.33。各處理經過4箇輪作季後,土壤硝態氮均在120~160 cm齣現纍積峰,A、B、C和D的硝態氮峰值分彆為58.65、28.98、105.89、45.29 mg·kg-1。在0~100cm土層,處理B的硝態氮纍積量達到144.22 kg·hm-2,顯著高于處理A、C、D;所有處理在100~200 cm土層均齣現較高的硝態氮纍積,處理C高達1021.19 kg·hm-2;0~400 cm的土壤硝態氮纍積量分彆為724.27、711.92、1324.30、730.70 kg·hm-2。處理A、B、C、D在耕層土壤氮素的錶觀損失分彆為1298.95、653.18、1236.39和718.43 kg·hm-2,處理B、D顯著低于處理A、C,D和B間差異不顯著。因此,處理D是培育高產的理想施肥模式,閤理的施肥量、科學的施肥時期以及有機無機的閤理配比是達到高產、提高肥效和環境友好的關鍵。
위료탐색배육고산량전적시비모식,실현담비자원적고효이용여배경효익,이화북평원적소맥(Triticum aestivum)-옥미(Zea mays L.)륜작체계작위연구대상,통과2007─2011년4개륜작계,탐토불동적시비모식대작물산량화토양초태담적영향。시험이처리A(당지전통관리)작위대조,종측토학정시비량、안작물생장발육명학시비시기、합리분배각시기적양분배비급증시유궤비등방면개변전통시비모식,설치3충고산시비배육모식,분별위처리B(현유고산전추천관리)、처리C(고비료투입관리)화처리D(수비고효관리),진행전간소구시험。4개륜작계적총산량이처리D위최고,체75430 kg·hm-2,기차시처리C위75166 kg·hm-2,당지전통적산량최저。동소맥계적흡담량위처리C화D현저고우A처리,분별고출444.78 kg·hm-2화310.20 kg·hm-2,단여처리B무현저차이;처리D재하옥미계적흡담량위776.75 kg·hm-2,현저고우처리A。처리B적담비편생산력치최고위38.21,처리D위36.71,처리A화C균위28.33。각처리경과4개륜작계후,토양초태담균재120~160 cm출현루적봉,A、B、C화D적초태담봉치분별위58.65、28.98、105.89、45.29 mg·kg-1。재0~100cm토층,처리B적초태담루적량체도144.22 kg·hm-2,현저고우처리A、C、D;소유처리재100~200 cm토층균출현교고적초태담루적,처리C고체1021.19 kg·hm-2;0~400 cm적토양초태담루적량분별위724.27、711.92、1324.30、730.70 kg·hm-2。처리A、B、C、D재경층토양담소적표관손실분별위1298.95、653.18、1236.39화718.43 kg·hm-2,처리B、D현저저우처리A、C,D화B간차이불현저。인차,처리D시배육고산적이상시비모식,합리적시비량、과학적시비시기이급유궤무궤적합리배비시체도고산、제고비효화배경우호적관건。
In order to explore the fertilization modes of cultivating the high yield grain field, and realize the efficient utilization and environmental benefit of nitrogen fertilizer resources, the study was conducted with the rotation system of wheat and maize as the research objects in North China Plain to investigate the effects of different fertilization models on crop yield and soil nitrate accumulation through four rotations from 2007 to 2011. The experiment changed the local traditional fertilization model marked as treatment A (as the control treatment) from confirming the fertilizer amount by soil testing, clearing the fertilization period by crop growing, rational distributing the nutrient ratios in crop growing periods and increasing organic fertilization; set up three kinds of high yield and fertilizer cultivation mode, respectively with treatment B (existing high yield field recommended management), treatment C (high fertilizer input management), treatment D (water and fertilizer efficient management) for a field experiment. The yield of D was the best in four crop rotations, which was 75 430 kg·hm-2, the second was treatment C, 75 166 kg·hm-2, local traditional management was the minimum. The N uptake of wheat in treatment C and D was significantly higher than that in A treatment, which were increased 444.78 kg·hm-2 and 310.20 kg·hm-2 separately, but had no significant difference with treatment B;The N uptake of maize in treatment D was 776.75 kg·hm-2, significantly higher than that in treatment A. The PFPN of B was up to 38.21 mg·kg-1, D was 36.71 mg·kg-1, A and C both were 28.33 mg·kg-1. After four crop rotations, the accumulation peaks of soil nitrate nitrogen in each treatment were all in 120~160 cm soil layers , the accumulation value of mode A, B, C and D were 58.65 mg·kg-1, 28.98 mg·kg-1, 105.89 mg·kg-1 and 45.29 mg·kg-1 respectively. In 0~100 cm soil layers, the nitrate N accumulation value in mode B was to 144.22 kg·hm-2 significantly higher than that in treatments A, C and D. All the treatments had the high nitrate N accumulation in 100~200 cm soil layers, and the highest value was 1 021.19 kg·hm-2 in treatment C. The total accumulative amounts of soil NO3--N of mode A, B, C, D in 0~400 cm soil layers reached 724.27, 711.92, 1 324.30, 730.70 kg·hm-2 respectively. Dealing with A, B, C, D, the soil nitrogen apparent losses in surface soil layer were 1 298.95, 653.18, 1 236.39 and 718.43 kg·hm-2 separately, and nitrogen apparent losses in treatment of B, D were significantly lower than that in mode A and C, the difference between B and D wasn’t significant. Therefore, the treatment D was an ideal fertilization mode for cultivating crop high-yield. The reasonable fertilizer rate, scientific fertilizer period and the reasonable proportion of the organic and inorganic were the key of achieving high yield, improving fertilizer effectiveness and realizing environmental friendly effects.