激光杂志
激光雜誌
격광잡지
LASER JOURNAL
2014年
12期
116-119
,共4页
交通流量%支持向量机%相空间重构%遗传算法
交通流量%支持嚮量機%相空間重構%遺傳算法
교통류량%지지향량궤%상공간중구%유전산법
traffic flow%support vector machine%phase space reconstruction%genetic algorithm
交通流量预测是智能交通系统中的关键技术,针对当前交通流量预测模型存在不足,提出一种遗传算法优化支持向量机的交通流量预测模型。首先收集交通流量历史数据,并基于混沌理想对其进行相空间重构,然后将训练样本输入到支持向量机中进行学习,并采用遗传算法优化支持向量机参数,建立交通流量预测模型,最后采用测试样本对模型的性能进行测试。结果表明,相对于经典交通流量预测模型,本文模型可以更加准确描述交通流量预测复杂的变化趋势,提高了交通流量的单步和多步预测精度。
交通流量預測是智能交通繫統中的關鍵技術,針對噹前交通流量預測模型存在不足,提齣一種遺傳算法優化支持嚮量機的交通流量預測模型。首先收集交通流量歷史數據,併基于混沌理想對其進行相空間重構,然後將訓練樣本輸入到支持嚮量機中進行學習,併採用遺傳算法優化支持嚮量機參數,建立交通流量預測模型,最後採用測試樣本對模型的性能進行測試。結果錶明,相對于經典交通流量預測模型,本文模型可以更加準確描述交通流量預測複雜的變化趨勢,提高瞭交通流量的單步和多步預測精度。
교통류량예측시지능교통계통중적관건기술,침대당전교통류량예측모형존재불족,제출일충유전산법우화지지향량궤적교통류량예측모형。수선수집교통류량역사수거,병기우혼돈이상대기진행상공간중구,연후장훈련양본수입도지지향량궤중진행학습,병채용유전산법우화지지향량궤삼수,건입교통류량예측모형,최후채용측시양본대모형적성능진행측시。결과표명,상대우경전교통류량예측모형,본문모형가이경가준학묘술교통류량예측복잡적변화추세,제고료교통류량적단보화다보예측정도。
Traffic flow prediction is key techonogy in intelligent transportation systems, in order to sovle the de_fects of the current traffic flow prediction models, a novel traffic flow predictive model is proposed based on support vector machine optimized by genetic algorithm. Firstly, the historic data of traffic flow is collected and the data are re_constructed based on the chaotic theory, secondly, the training samples are input to support vector machines to learn whihc genetic algorithm is used to optimize the parameters of support vector machine to establish the prediction model of traffic flow, finally the performance is tested by sample. The results show that, compared with the classical predic_tion models of traffic flow, the propsed model can more accurately describe the complex change trend of traffic flow and improve the prediction precision fo single step and multi step traffic flow.