合肥工业大学学报(自然科学版)
閤肥工業大學學報(自然科學版)
합비공업대학학보(자연과학판)
JOURNAL OF HEFEI UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE)
2014年
12期
1523-1527
,共5页
有理PH三次曲线%G2 Hermite插值%非均匀有理TC-双弧
有理PH三次麯線%G2 Hermite插值%非均勻有理TC-雙弧
유리PH삼차곡선%G2 Hermite삽치%비균균유리TC-쌍호
rational cubic Pythagorean-hodograph(PH) curve%G2 Hermite interpolation%non-uniform rational TC-biarcs
S‐型PH(Pythagorean‐hodograph ,简称PH)曲线可以用于整体构造含有拐点等情况的曲线造型。文章运用分段的思想,通过将有理三次PH曲线与TC‐双弧相结合,引入曲率参数κ,构造出插值 G2 Hermite数据的S‐型PH曲线;与已有的结果相比,构造的曲线更加丰富,且具有更好的光滑性;最后,通过调整端点处的曲率参数κ,使得曲线具有更好的曲率变化。
S‐型PH(Pythagorean‐hodograph ,簡稱PH)麯線可以用于整體構造含有枴點等情況的麯線造型。文章運用分段的思想,通過將有理三次PH麯線與TC‐雙弧相結閤,引入麯率參數κ,構造齣插值 G2 Hermite數據的S‐型PH麯線;與已有的結果相比,構造的麯線更加豐富,且具有更好的光滑性;最後,通過調整耑點處的麯率參數κ,使得麯線具有更好的麯率變化。
S‐형PH(Pythagorean‐hodograph ,간칭PH)곡선가이용우정체구조함유괴점등정황적곡선조형。문장운용분단적사상,통과장유리삼차PH곡선여TC‐쌍호상결합,인입곡솔삼수κ,구조출삽치 G2 Hermite수거적S‐형PH곡선;여이유적결과상비,구조적곡선경가봉부,차구유경호적광활성;최후,통과조정단점처적곡솔삼수κ,사득곡선구유경호적곡솔변화。
S‐shaped Pythagorean‐hodograph(PH) curve can be used in curve modeling with inflection point in overall structure .In this paper ,by combining the rational cubic PH curve with the TC‐biarcs based on the idea of segmentation and introducing the curvature parameter κ,the S‐shaped G2 Hermite interpolation with rational PH cubics is constructed .Compared with the former results ,the curves have diverse shapes and better smoothness .Finally ,the curves have preferable change of curvature by adjusting the curvature parameters of the endpoints .