测绘学报
測繪學報
측회학보
ACTA GEODAETICA ET CARTOGRAPHICA SINICA
2014年
12期
1266-1273
,共8页
车载全景影像%光流聚类%均值漂移%SIFT特征
車載全景影像%光流聚類%均值漂移%SIFT特徵
차재전경영상%광류취류%균치표이%SIFT특정
vehicle-borne panoramic image%optical flow clustering%mean shift%SIFT feature
提出一种光流特征聚类的车载全景序列影像匹配方法。采用非参数化的均值漂移特征聚类思想,以SI FT多尺度特征匹配点的位置量和光流矢量,构建了影像特征空间的空域和值域;利用特征空间中对应的显著图像光流特征为聚类条件,实现了全景序列影像的匹配;最后以全景极线几何约束为条件进行粗差的剔除。通过相同、不同内点率以及不同数据的试验对比分析,本文方法在匹配正确点数和正确率方面要优于经典的Ransac法和金字塔Lucas‐K anade光流法,尤其在场景复杂造成的低内点率情况下,算法表现较为稳定,并可较好地剔除由重复纹理、运动物体、尺度变化等产生的匹配点粗差。
提齣一種光流特徵聚類的車載全景序列影像匹配方法。採用非參數化的均值漂移特徵聚類思想,以SI FT多呎度特徵匹配點的位置量和光流矢量,構建瞭影像特徵空間的空域和值域;利用特徵空間中對應的顯著圖像光流特徵為聚類條件,實現瞭全景序列影像的匹配;最後以全景極線幾何約束為條件進行粗差的剔除。通過相同、不同內點率以及不同數據的試驗對比分析,本文方法在匹配正確點數和正確率方麵要優于經典的Ransac法和金字塔Lucas‐K anade光流法,尤其在場景複雜造成的低內點率情況下,算法錶現較為穩定,併可較好地剔除由重複紋理、運動物體、呎度變化等產生的匹配點粗差。
제출일충광류특정취류적차재전경서렬영상필배방법。채용비삼수화적균치표이특정취류사상,이SI FT다척도특정필배점적위치량화광류시량,구건료영상특정공간적공역화치역;이용특정공간중대응적현저도상광류특정위취류조건,실현료전경서렬영상적필배;최후이전경겁선궤하약속위조건진행조차적척제。통과상동、불동내점솔이급불동수거적시험대비분석,본문방법재필배정학점수화정학솔방면요우우경전적Ransac법화금자탑Lucas‐K anade광류법,우기재장경복잡조성적저내점솔정황하,산법표현교위은정,병가교호지척제유중복문리、운동물체、척도변화등산생적필배점조차。
An image match method based on optical flow feature clustering is presented for vehicle‐borne panoramic image sequence .The spati al domain and range domain of image feature space are built by the coordinates of SIFT multi‐scale feature matching point and optical flow vector ,then the panoramic image match is finished by Mean Shift attached to the optical flow clustering constraint condition in image feature space .Finally ,panoramic geometric constraint of Ransac method is used for gross error detection .Several panoramic images are selected and used for experiment .The experiments of analysis and comparison were carried out in the conditions of the same inlier ratio ,different inlier ratio and different data .The results show that the proposed method in the number and accuracy of correct matching points are superior to classic Ransac method and Pyramid Lucas‐Kanade method ,especially in the complex scene in low inlier ratio cases ,the algorithm performance is relatively stable ,and have better constraint effect for the gross error usually caused by repeat texture ,moving objects and scale change .