机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2014年
22期
178-185
,共8页
苏高辉%杨自春%孙丰瑞
囌高輝%楊自春%孫豐瑞
소고휘%양자춘%손봉서
气凝胶%导热系数%分子动力学%界面热阻%纳米材料%尺度效应
氣凝膠%導熱繫數%分子動力學%界麵熱阻%納米材料%呎度效應
기응효%도열계수%분자동역학%계면열조%납미재료%척도효응
aerogel%thermal conductivity%molecular dynamics%interface thermal resistance%nanomaterials%scale effect
采用分子动力学方法模拟融化-淬火工艺制备非晶态 SiO2材料和 SiO2气凝胶初级粒子单元。基于非平衡分子动力学(Non-equilibrium molecular dynamics,NEMD)理论计算体态材料和初级粒子单元的导热系数,计算过程考虑了冷热源引起的尺度效应。结果表明,计算得到的体态材料导热系数与文献计算结果吻合良好。对于初级粒子单元,在粒径2~6 nm范围内,粒子直径使得粒子单元导热系数出现了尺度效应,但是影响相对较小。粒子间界面直径对粒子单元导热系数影响很大,当粒子直径为3 nm时,界面直径从0.89 nm增加到2.49 nm,粒子单元导热系数增大了171.61%,粒子界面处的温度阶跃,表明存在明显的界面热阻效应;且界面直径越小,界面热阻越大。
採用分子動力學方法模擬融化-淬火工藝製備非晶態 SiO2材料和 SiO2氣凝膠初級粒子單元。基于非平衡分子動力學(Non-equilibrium molecular dynamics,NEMD)理論計算體態材料和初級粒子單元的導熱繫數,計算過程攷慮瞭冷熱源引起的呎度效應。結果錶明,計算得到的體態材料導熱繫數與文獻計算結果吻閤良好。對于初級粒子單元,在粒徑2~6 nm範圍內,粒子直徑使得粒子單元導熱繫數齣現瞭呎度效應,但是影響相對較小。粒子間界麵直徑對粒子單元導熱繫數影響很大,噹粒子直徑為3 nm時,界麵直徑從0.89 nm增加到2.49 nm,粒子單元導熱繫數增大瞭171.61%,粒子界麵處的溫度階躍,錶明存在明顯的界麵熱阻效應;且界麵直徑越小,界麵熱阻越大。
채용분자동역학방법모의융화-쉬화공예제비비정태 SiO2재료화 SiO2기응효초급입자단원。기우비평형분자동역학(Non-equilibrium molecular dynamics,NEMD)이론계산체태재료화초급입자단원적도열계수,계산과정고필료랭열원인기적척도효응。결과표명,계산득도적체태재료도열계수여문헌계산결과문합량호。대우초급입자단원,재립경2~6 nm범위내,입자직경사득입자단원도열계수출현료척도효응,단시영향상대교소。입자간계면직경대입자단원도열계수영향흔대,당입자직경위3 nm시,계면직경종0.89 nm증가도2.49 nm,입자단원도열계수증대료171.61%,입자계면처적온도계약,표명존재명현적계면열조효응;차계면직경월소,계면열조월대。
The amorphous SiO2 and primary particle unit(PPU) of SiO2 aerogel are generated using the melting-quenching process based on the molecular dynamics method. Their thermal conductivities(TC) are also calculated by the non-equilibrium molecular dynamics(NEMD). The size effect on the TC caused by the heat source and heat sink has been taken into account. The predicted TC of the bulk amorphous SiO2 material is in good agreement with the available results in literature. Calculated results also show that the particle diameter has made the TC of the PPU show scale effect in the range of 2-6 nm though the effect is relative small. The diameter of the interface between particles has significant effect on the TC of the PPU which increase 171.61% as the interface diameter increases from 0.89 nm to 2.49 nm when the particle diameter is 3 nm. A temperature drop at the interface showed that there is interfacial thermal resistance between the neighboring particles. It is also shown that, the smaller the interface size, the bigger the interface thermal resistance.