机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2014年
22期
136-141
,共6页
沈法鹏%赵又群%孙秋云%林棻%汪伟
瀋法鵬%趙又群%孫鞦雲%林棻%汪偉
침법붕%조우군%손추운%림분%왕위
车辆动力学%状态估计%粒子滤波%质心侧偏角%横摆角速度
車輛動力學%狀態估計%粒子濾波%質心側偏角%橫襬角速度
차량동역학%상태고계%입자려파%질심측편각%횡파각속도
vehicle dynamic%state estimation%particle filtering%side slip angle%yaw rate
行驶汽车状态变量质心侧偏角和横摆角速度是汽车稳定性控制系统中重要控制变量,准确获取行驶过程中的状态信息是汽车控制系统研究的关键问题。应用估计理论由传感器测出易测变量来估计难以测量的关键状态变量是一种常用的估计方法。提出一种新的粒子滤波算法通过所建立的包含定常平稳随机噪声和非线性轮胎的汽车动力学7自由度整车模型对汽车状态进行估计。针对粒子滤波过程中出现的退化问题,应用迭代扩展卡尔曼滤波融入最新观测信息产生更加接近真实状态的重要性密度函数,辅助粒子滤波算法通过所产生的重要性密度函数结合观测量进行重采样,结合这两种算法提出迭代扩展卡尔曼-辅助粒子滤波算法(Iterative extended Kalman filtering-auxiliary particle filtering algorithm, IEKF-APF)以改善粒子采样和估计精度的提高。为验证所提出的IEKF-APF算法估计性能,将其结果与实车试验结果和无迹卡尔曼滤波算法(Unscented Kalman filtering, UKF)估计结果进行比较,结果表明其估计性能优于UKF,更接近于试验结果。
行駛汽車狀態變量質心側偏角和橫襬角速度是汽車穩定性控製繫統中重要控製變量,準確穫取行駛過程中的狀態信息是汽車控製繫統研究的關鍵問題。應用估計理論由傳感器測齣易測變量來估計難以測量的關鍵狀態變量是一種常用的估計方法。提齣一種新的粒子濾波算法通過所建立的包含定常平穩隨機譟聲和非線性輪胎的汽車動力學7自由度整車模型對汽車狀態進行估計。針對粒子濾波過程中齣現的退化問題,應用迭代擴展卡爾曼濾波融入最新觀測信息產生更加接近真實狀態的重要性密度函數,輔助粒子濾波算法通過所產生的重要性密度函數結閤觀測量進行重採樣,結閤這兩種算法提齣迭代擴展卡爾曼-輔助粒子濾波算法(Iterative extended Kalman filtering-auxiliary particle filtering algorithm, IEKF-APF)以改善粒子採樣和估計精度的提高。為驗證所提齣的IEKF-APF算法估計性能,將其結果與實車試驗結果和無跡卡爾曼濾波算法(Unscented Kalman filtering, UKF)估計結果進行比較,結果錶明其估計性能優于UKF,更接近于試驗結果。
행사기차상태변량질심측편각화횡파각속도시기차은정성공제계통중중요공제변량,준학획취행사과정중적상태신식시기차공제계통연구적관건문제。응용고계이론유전감기측출역측변량래고계난이측량적관건상태변량시일충상용적고계방법。제출일충신적입자려파산법통과소건립적포함정상평은수궤조성화비선성륜태적기차동역학7자유도정차모형대기차상태진행고계。침대입자려파과정중출현적퇴화문제,응용질대확전잡이만려파융입최신관측신식산생경가접근진실상태적중요성밀도함수,보조입자려파산법통과소산생적중요성밀도함수결합관측량진행중채양,결합저량충산법제출질대확전잡이만-보조입자려파산법(Iterative extended Kalman filtering-auxiliary particle filtering algorithm, IEKF-APF)이개선입자채양화고계정도적제고。위험증소제출적IEKF-APF산법고계성능,장기결과여실차시험결과화무적잡이만려파산법(Unscented Kalman filtering, UKF)고계결과진행비교,결과표명기고계성능우우UKF,경접근우시험결과。
Side slip angle and yaw rate are the important control parameters of vehicle stability control system, and getting accurate state information of driving process is the key issue of control system research. A common estimation method based on the estimation theory is that using sensors to get easily measured variables, and then estimating the key state variables which are difficult to measure. A new particle filtering algorithm is proposed to estimate vehicle key states with a 7-DOF nonlinear vehicle dynamic model which contained constant noise and nonlinear tire model. For particle degradation during particle filtering process, the iterative extended Kalman filtering algorithm is used to produce importance density function which is more close to the true state, and auxiliary particle filtering algorithm with the latest observation information is used to resample particle with the observation. The iterative extended Kalman filtering-auxiliary particle filtering algorithm(IEKF-APF) combines of the above two algorithms to improve the particle resampling and estimation precision. To validate the estimation performance of IEKF-APF, compare the estimation results of IEKF-APF simultaneously with road test values and unscented Kalman filtering algorithm(UKF) estimation results, and the comparison shows that IEKF-APF estimation performance is better than that of UKF, and its estimation results are closer to the test results.