湖南师范大学自然科学学报
湖南師範大學自然科學學報
호남사범대학자연과학학보
ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS NORMALIS HUNANENSIS
2014年
6期
84-87
,共4页
随机双梯度算法%独立分量分析%负熵%峭度
隨機雙梯度算法%獨立分量分析%負熵%峭度
수궤쌍제도산법%독립분량분석%부적%초도
stochastic dual-gradient algorithm%independent component analysis%negative entropy%kurtosis
随机双梯度算法是独立分量分析中一个重要的学习算法,但该算法收敛速度慢,稳态误差大,不利于信号的准确适时性处理。论文重点对随机双梯度算法进行了改进,提出一种基于负熵的随机双梯度算法。在改进的算法中,用负熵来度量其中的随机变量非高斯性,从而来克服峭度的不稳健性。论文最后通过理论分析和仿真实验证明这种改进的随机双梯度算法具有较好的分离效果且稳定性高。
隨機雙梯度算法是獨立分量分析中一箇重要的學習算法,但該算法收斂速度慢,穩態誤差大,不利于信號的準確適時性處理。論文重點對隨機雙梯度算法進行瞭改進,提齣一種基于負熵的隨機雙梯度算法。在改進的算法中,用負熵來度量其中的隨機變量非高斯性,從而來剋服峭度的不穩健性。論文最後通過理論分析和倣真實驗證明這種改進的隨機雙梯度算法具有較好的分離效果且穩定性高。
수궤쌍제도산법시독립분량분석중일개중요적학습산법,단해산법수렴속도만,은태오차대,불리우신호적준학괄시성처리。논문중점대수궤쌍제도산법진행료개진,제출일충기우부적적수궤쌍제도산법。재개진적산법중,용부적래도량기중적수궤변량비고사성,종이래극복초도적불은건성。논문최후통과이론분석화방진실험증명저충개진적수궤쌍제도산법구유교호적분리효과차은정성고。
Stochastic dual-gradient algorithm is an important learning algorithm of independent component analysis, whose convergence speed is slow and steady-state error is large, which leads to inaccuracy in timely signal processing.Focusing on the improvement of stochastic dual-gradient algorithm, a stochastic dual-gradient algorithm based on negative entropy is proposed, in which negative entropy is used to measure the non-Gaussian of random variables and thus to overcome the kurtosis of robustness in the improved algorithm.By theoretical analysis and sim-ulation experiments the paper finally proves that the improved Stochastic Dual-Gradient Algorithm has better separa-tion effect and higher stability.