安徽工程大学学报
安徽工程大學學報
안휘공정대학학보
JOURNAL OF ANHUI UNIVERSITY OF TECHNOLOGY AND SCIENCE(NATURAL SCIENCE)
2014年
4期
36-39
,共4页
电动汽车%时空分配%充电调度%粒子群优化算法
電動汽車%時空分配%充電調度%粒子群優化算法
전동기차%시공분배%충전조도%입자군우화산법
electric vehicle%space-time allocation%charging scheduling%particle swarm optimization
兼顾待充电汽车的时间分配和空间分配,以每个时段每个充电站的充电电动汽车数量为决策变量,建立了集中充电时段内充电负荷方差和充电站充电汽车数量方差的数学模型。提出时空优化分配策略,使待充电汽车在时空上达到均衡分配,并在基本粒子群算法基础上结合了线性递减权重和异步变化学习因子方法。基于纽约州独立系统交易运行机构(NYISO)的原始负荷数据进行算例仿真。结果表明,文中提出的电动汽车集中充电调度策略在时空上优化分配待充电汽车,达到了降低负荷峰谷差、减小负荷波动的目的。
兼顧待充電汽車的時間分配和空間分配,以每箇時段每箇充電站的充電電動汽車數量為決策變量,建立瞭集中充電時段內充電負荷方差和充電站充電汽車數量方差的數學模型。提齣時空優化分配策略,使待充電汽車在時空上達到均衡分配,併在基本粒子群算法基礎上結閤瞭線性遞減權重和異步變化學習因子方法。基于紐約州獨立繫統交易運行機構(NYISO)的原始負荷數據進行算例倣真。結果錶明,文中提齣的電動汽車集中充電調度策略在時空上優化分配待充電汽車,達到瞭降低負荷峰穀差、減小負荷波動的目的。
겸고대충전기차적시간분배화공간분배,이매개시단매개충전참적충전전동기차수량위결책변량,건립료집중충전시단내충전부하방차화충전참충전기차수량방차적수학모형。제출시공우화분배책략,사대충전기차재시공상체도균형분배,병재기본입자군산법기출상결합료선성체감권중화이보변화학습인자방법。기우뉴약주독립계통교역운행궤구(NYISO)적원시부하수거진행산례방진。결과표명,문중제출적전동기차집중충전조도책략재시공상우화분배대충전기차,체도료강저부하봉곡차、감소부하파동적목적。
This paper proposes a new concentrated charging scheduling strategy,which considers both spatial al-location and temporal allocation of electric vehicle and uses the number of charging electric in each time interval and each charging station vehicles as decision variables.For achieving averagly distributed charging electric vehi-cles in space-time,the mathematical models of load variance and the number of charging vehicles variance are set up,an optimized space-time allocation strategy is proposed to make loads reached equilibrium in time and space, and basic particle swarm optimization (PSO)algorithm combines the linear decreasing weight and asynchronous change learning factor methods to solve the models.Finally,a simulation based on a certain area's load curve is made,revealing that the poposed centralized charging scheduling strategy can not only lower the peak-valley difference,but aslo reduce the load fluctuation.