信号处理
信號處理
신호처리
SIGNAL PROCESSING
2014年
12期
1457-1463
,共7页
王蓉芳%刘璐%焦李成%古晶
王蓉芳%劉璐%焦李成%古晶
왕용방%류로%초리성%고정
多尺度压缩感知%自适应采样%边缘信息%小波变换
多呎度壓縮感知%自適應採樣%邊緣信息%小波變換
다척도압축감지%자괄응채양%변연신식%소파변환
multiscale compressed sensing%adaptive sampling%edge information%wavelet transform
在小波域多尺度压缩感知框架下,被完整保留的低频系数存在着许多可利用的图像信息。本文在分析了不同尺度之间、以及同一尺度之内的系数块存在能量差异的基础上,提出了利用边缘信息的多尺度分块压缩感知自适应采样方法(EAS)。该方法首先利用低频系数提取出边缘信息,然后将边缘信息分块,加权计算每个块的边缘信息度,根据边缘信息度判断每个系数块的能量大小,将其转换成每个子块的自适应采样率,从而实现多尺度分块压缩感知的自适应采样。采用医学图像,含有复杂纹理的自然图像和含有严重噪声的SAR图像三类测试数据,验证了EAS方法的性能。数值实验结果表明,EAS方法对不同的压缩感知算法均有很大的提升,能够显著提高图像的重构质量和视觉效果。
在小波域多呎度壓縮感知框架下,被完整保留的低頻繫數存在著許多可利用的圖像信息。本文在分析瞭不同呎度之間、以及同一呎度之內的繫數塊存在能量差異的基礎上,提齣瞭利用邊緣信息的多呎度分塊壓縮感知自適應採樣方法(EAS)。該方法首先利用低頻繫數提取齣邊緣信息,然後將邊緣信息分塊,加權計算每箇塊的邊緣信息度,根據邊緣信息度判斷每箇繫數塊的能量大小,將其轉換成每箇子塊的自適應採樣率,從而實現多呎度分塊壓縮感知的自適應採樣。採用醫學圖像,含有複雜紋理的自然圖像和含有嚴重譟聲的SAR圖像三類測試數據,驗證瞭EAS方法的性能。數值實驗結果錶明,EAS方法對不同的壓縮感知算法均有很大的提升,能夠顯著提高圖像的重構質量和視覺效果。
재소파역다척도압축감지광가하,피완정보류적저빈계수존재착허다가이용적도상신식。본문재분석료불동척도지간、이급동일척도지내적계수괴존재능량차이적기출상,제출료이용변연신식적다척도분괴압축감지자괄응채양방법(EAS)。해방법수선이용저빈계수제취출변연신식,연후장변연신식분괴,가권계산매개괴적변연신식도,근거변연신식도판단매개계수괴적능량대소,장기전환성매개자괴적자괄응채양솔,종이실현다척도분괴압축감지적자괄응채양。채용의학도상,함유복잡문리적자연도상화함유엄중조성적SAR도상삼류측시수거,험증료EAS방법적성능。수치실험결과표명,EAS방법대불동적압축감지산법균유흔대적제승,능구현저제고도상적중구질량화시각효과。
Under the framework of multiscale compressed sensing in wavelet domain,the low frequency part of wavelet decomposition coefficients that contained much useful image information were completely preserved.Based on the analysis of different coefficient sub-blocks in the inter-scale and intra-scale had varied energy content,we proposed an edge-based a-daptive sampling method for multiscale block compressed sensing.Firstly,we extracted edge information from low frequen-cy coefficients,and then got the edge information value by the way of using weighted calculation on the each edge informa-tion block.Lastly,we transformed the edge information value into adaptive sample rate of each coefficient sub-blocks.The method achieved the more efficient multiscale block adaptive sampling for the compressed sensing of images.The perform-ance of our method was verified on the three types test images:the sparse medical images,the natural images with complex texture and the SAR images with many speckle noise.The results show that it can significantly improve several compressed sensing algorithms on both the reconstructed image quality and the visual effect.