光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2015年
1期
263-266
,共4页
自动分类%恒星光谱%流形判别分析%模糊隶属度%双支持向量机
自動分類%恆星光譜%流形判彆分析%模糊隸屬度%雙支持嚮量機
자동분류%항성광보%류형판별분석%모호대속도%쌍지지향량궤
Automatic classification%Star spectra data%Manifold-based discriminant analysis (MDA)%Fuzzy membership%Twin support vector machine (TWSVM)
支持向量机(support vector machine ,SVM )具有良好的学习性能和泛化能力,因而被广泛应用于恒星光谱分类中。然而实际应用面临的数据规模往往很大,SVM 便暴露出计算量大、分类速度慢等问题。为了解决上述问题,Jayadeva等提出双支持向量机(twin support vector machine ,TWSVM ),将计算时间减少至SVM的1/4。然后上述方法仅关注数据的全局特征,对每类数据的局部特征并未关注。鉴于此,提出基于流形模糊双支持向量机(manifold fuzzy twin support vector machine ,MF-TSVM)的恒星光谱分类方法。利用流形判别分析获得数据的全局特征和局部特征,模糊隶属度函数的引入将各类数据区别对待,尽可能减少噪声点和奇异点对分类结果的影响。与C-SVM ,KNN等传统分类方法在SDSS恒星光谱数据集上的比较实验表明了该方法的有效性。
支持嚮量機(support vector machine ,SVM )具有良好的學習性能和汎化能力,因而被廣汎應用于恆星光譜分類中。然而實際應用麵臨的數據規模往往很大,SVM 便暴露齣計算量大、分類速度慢等問題。為瞭解決上述問題,Jayadeva等提齣雙支持嚮量機(twin support vector machine ,TWSVM ),將計算時間減少至SVM的1/4。然後上述方法僅關註數據的全跼特徵,對每類數據的跼部特徵併未關註。鑒于此,提齣基于流形模糊雙支持嚮量機(manifold fuzzy twin support vector machine ,MF-TSVM)的恆星光譜分類方法。利用流形判彆分析穫得數據的全跼特徵和跼部特徵,模糊隸屬度函數的引入將各類數據區彆對待,儘可能減少譟聲點和奇異點對分類結果的影響。與C-SVM ,KNN等傳統分類方法在SDSS恆星光譜數據集上的比較實驗錶明瞭該方法的有效性。
지지향량궤(support vector machine ,SVM )구유량호적학습성능화범화능력,인이피엄범응용우항성광보분류중。연이실제응용면림적수거규모왕왕흔대,SVM 편폭로출계산량대、분류속도만등문제。위료해결상술문제,Jayadeva등제출쌍지지향량궤(twin support vector machine ,TWSVM ),장계산시간감소지SVM적1/4。연후상술방법부관주수거적전국특정,대매류수거적국부특정병미관주。감우차,제출기우류형모호쌍지지향량궤(manifold fuzzy twin support vector machine ,MF-TSVM)적항성광보분류방법。이용류형판별분석획득수거적전국특정화국부특정,모호대속도함수적인입장각류수거구별대대,진가능감소조성점화기이점대분류결과적영향。여C-SVM ,KNN등전통분류방법재SDSS항성광보수거집상적비교실험표명료해방법적유효성。
Support vector machine (SVM ) with good leaning ability and generalization is widely used in the star spectra data clas-sification .But when the scale of data becomes larger ,the shortages of SVM appear :the calculation amount is quite large and the classification speed is too slow .In order to solve the above problems ,twin support vector machine (TWSVM ) was proposed by Jayadeva .The advantage of TSVM is that the time cost is reduced to 1/4 of that of SVM .While all the methods mentioned above only focus on the global characteristics and neglect the local characteristics .In view of this ,an automatic classification method of star spectra data based on manifold fuzzy twin support vector machine (MF-TSVM ) is proposed in this paper .In MF-TSVM ,manifold-based discriminant analysis (MDA) is used to obtain the global and local characteristics of the input data and the fuzzy membership is introduced to reduce the influences of noise and singular data on the classification results .Compara-tive experiments with current classification methods ,such as C-SVM and KNN ,on the SDSS star spectra datasets verify the ef-fectiveness of the proposed method .