光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2015年
1期
258-262
,共5页
屠良平%魏会明%韦鹏%潘景昌%罗阿理%赵永恒
屠良平%魏會明%韋鵬%潘景昌%囉阿理%趙永恆
도량평%위회명%위붕%반경창%라아리%조영항
超新星候选%局部孤立性因子%k-距离邻域
超新星候選%跼部孤立性因子%k-距離鄰域
초신성후선%국부고립성인자%k-거리린역
Supernova candidate%Local outlier factor%k-distance neighborhood
超新星是宇宙学中的“标准烛光”,其在星系中爆发的概率很低,是一种特殊、稀少的天体,只有在大量观测的星系数据中才有机会遇到,而正处于爆发期的超新星会照亮其整个星系从而在观测获得的星系光谱中具有较明显的特征。但是,目前已发现的超新星数量相对于大量的天体而言又是非常稀少的,搜寻它们所用的计算时间成为能否进行后续观测的关键,因此需要寻找高效率的超新星搜寻方法。对超新星候选范围进行约减的LOF算法的时间复杂度较高,计算量大,不适用于大规模数据集。为此通过对LOF算法进行改进,提出了一种在海量星系光谱中快速约减超新星候范围的新方法(SKLOF)。首先对光谱数据集中离中心点近的数据点进行数据剪枝,剪掉那些肯定不是超新星候选体的光谱数据对象,然后利用改进的LOF算法计算剩余的光谱数据的孤立性因子并降序排列进行离群搜索,最后获得超新星候选体的较小的搜索范围以便进行后续的证认。实验结果表明,该算法十分有效,不仅在精确度上有所提高,而且相比于LOF算法还进一步缩短了算法的运行时间,提高了算法的执行效率。
超新星是宇宙學中的“標準燭光”,其在星繫中爆髮的概率很低,是一種特殊、稀少的天體,隻有在大量觀測的星繫數據中纔有機會遇到,而正處于爆髮期的超新星會照亮其整箇星繫從而在觀測穫得的星繫光譜中具有較明顯的特徵。但是,目前已髮現的超新星數量相對于大量的天體而言又是非常稀少的,搜尋它們所用的計算時間成為能否進行後續觀測的關鍵,因此需要尋找高效率的超新星搜尋方法。對超新星候選範圍進行約減的LOF算法的時間複雜度較高,計算量大,不適用于大規模數據集。為此通過對LOF算法進行改進,提齣瞭一種在海量星繫光譜中快速約減超新星候範圍的新方法(SKLOF)。首先對光譜數據集中離中心點近的數據點進行數據剪枝,剪掉那些肯定不是超新星候選體的光譜數據對象,然後利用改進的LOF算法計算剩餘的光譜數據的孤立性因子併降序排列進行離群搜索,最後穫得超新星候選體的較小的搜索範圍以便進行後續的證認。實驗結果錶明,該算法十分有效,不僅在精確度上有所提高,而且相比于LOF算法還進一步縮短瞭算法的運行時間,提高瞭算法的執行效率。
초신성시우주학중적“표준충광”,기재성계중폭발적개솔흔저,시일충특수、희소적천체,지유재대량관측적성계수거중재유궤회우도,이정처우폭발기적초신성회조량기정개성계종이재관측획득적성계광보중구유교명현적특정。단시,목전이발현적초신성수량상대우대량적천체이언우시비상희소적,수심타문소용적계산시간성위능부진행후속관측적관건,인차수요심조고효솔적초신성수심방법。대초신성후선범위진행약감적LOF산법적시간복잡도교고,계산량대,불괄용우대규모수거집。위차통과대LOF산법진행개진,제출료일충재해량성계광보중쾌속약감초신성후범위적신방법(SKLOF)。수선대광보수거집중리중심점근적수거점진행수거전지,전도나사긍정불시초신성후선체적광보수거대상,연후이용개진적LOF산법계산잉여적광보수거적고립성인자병강서배렬진행리군수색,최후획득초신성후선체적교소적수색범위이편진행후속적증인。실험결과표명,해산법십분유효,불부재정학도상유소제고,이차상비우LOF산법환진일보축단료산법적운행시간,제고료산법적집행효솔。
Supernova (SN) is called the “standard candles” in the cosmology ,the probability of outbreak in the galaxy is very low and is a kind of special ,rare astronomical objects .Only in a large number of galaxies ,we have a chance to find the superno-va .The supernova which is in the midst of explosion will illuminate the entire galaxy ,so the spectra of galaxies we obtained have obvious features of supernova .But the number of supernova have been found is very small relative to the large number of astro-nomical objects .The time computation that search the supernova be the key to weather the follow-up observations ,therefore it needs to look for an efficient method .The time complexity of the density-based outlier detecting algorithm (LOF) is not ideal , which effects its application in large datasets .Through the improvement of LOF algorithm ,a new algorithm that reduces the searching range of supernova candidates in a flood of spectra of galaxies is introduced and named SKLOF .Firstly ,the spectra datasets are pruned and we can get rid of most objects are impossible to be the outliers .Secondly ,we use the improved LOF al-gorithm to calculate the local outlier factors (LOF) of the spectra datasets remained and all LOFs are arranged in descending or-der .Finally ,we can get the smaller searching range of the supernova candidates for the subsequent identification .The experi-mental results show that the algorithm is very effective ,not only improved in accuracy ,but also reduce the operation time com-pared with LOF algorithm with the guarantee of the accuracy of detection .