地球信息科学学报
地毬信息科學學報
지구신식과학학보
GEO-INFORMATION SCIENCE
2015年
1期
86-90
,共5页
徐君%徐富红%蔡体健%王彩玲%黄德昌%李伟平
徐君%徐富紅%蔡體健%王綵玲%黃德昌%李偉平
서군%서부홍%채체건%왕채령%황덕창%리위평
高光谱%混合像元%端元提取%最大距离%纯像元指数
高光譜%混閤像元%耑元提取%最大距離%純像元指數
고광보%혼합상원%단원제취%최대거리%순상원지수
hyperspectral%mixed pixel%endmember extraction%maximum distance%pure pixel index
在高光谱混合像元分解中,PPI算法是一种比较成熟的算法,但PPI算法中每次投影向量的生成都是随机的,多次执行PPI算法后端元提取的结果并不稳定。本文以线性光谱混合模型的凸面几何学描述为基础,利用端元在高光谱图像特征空间中所形成的凸面单形体端点的特点,提出了一种区别于PPI算法的最大距离纯像元指数方法。选取特征空间中所有样本点的光谱均值作为超球的球心,计算所有样本点到球心的欧氏距离,以等于或大于这个最大距离的长度作为半径,在特征空间中设计一个包围所有样本点的超球面,并在超球面上均匀地选取参考点,针对每一个参考点,在样本点中找出与它距离最远的一个,记录每个样本点成为距离最大点的次数,将其作为评价该像元是否为端元的纯像元指数,从而使得每次端元提取的精度得到保证。最后,利用美国内华达州Cuprite获取的AVIRIS数据对算法进行了验证。实验结果表明,采用本文算法提取的端元精度优于N-FINDR算法和VCA算法,而且鲁棒性较好,克服了PPI算法由于随机生成投影向量所带来的端元提取不稳定性。
在高光譜混閤像元分解中,PPI算法是一種比較成熟的算法,但PPI算法中每次投影嚮量的生成都是隨機的,多次執行PPI算法後耑元提取的結果併不穩定。本文以線性光譜混閤模型的凸麵幾何學描述為基礎,利用耑元在高光譜圖像特徵空間中所形成的凸麵單形體耑點的特點,提齣瞭一種區彆于PPI算法的最大距離純像元指數方法。選取特徵空間中所有樣本點的光譜均值作為超毬的毬心,計算所有樣本點到毬心的歐氏距離,以等于或大于這箇最大距離的長度作為半徑,在特徵空間中設計一箇包圍所有樣本點的超毬麵,併在超毬麵上均勻地選取參攷點,針對每一箇參攷點,在樣本點中找齣與它距離最遠的一箇,記錄每箇樣本點成為距離最大點的次數,將其作為評價該像元是否為耑元的純像元指數,從而使得每次耑元提取的精度得到保證。最後,利用美國內華達州Cuprite穫取的AVIRIS數據對算法進行瞭驗證。實驗結果錶明,採用本文算法提取的耑元精度優于N-FINDR算法和VCA算法,而且魯棒性較好,剋服瞭PPI算法由于隨機生成投影嚮量所帶來的耑元提取不穩定性。
재고광보혼합상원분해중,PPI산법시일충비교성숙적산법,단PPI산법중매차투영향량적생성도시수궤적,다차집행PPI산법후단원제취적결과병불은정。본문이선성광보혼합모형적철면궤하학묘술위기출,이용단원재고광보도상특정공간중소형성적철면단형체단점적특점,제출료일충구별우PPI산법적최대거리순상원지수방법。선취특정공간중소유양본점적광보균치작위초구적구심,계산소유양본점도구심적구씨거리,이등우혹대우저개최대거리적장도작위반경,재특정공간중설계일개포위소유양본점적초구면,병재초구면상균균지선취삼고점,침대매일개삼고점,재양본점중조출여타거리최원적일개,기록매개양본점성위거리최대점적차수,장기작위평개해상원시부위단원적순상원지수,종이사득매차단원제취적정도득도보증。최후,이용미국내화체주Cuprite획취적AVIRIS수거대산법진행료험증。실험결과표명,채용본문산법제취적단원정도우우N-FINDR산법화VCA산법,이차로봉성교호,극복료PPI산법유우수궤생성투영향량소대래적단원제취불은정성。
In hyperspectral unmixing, PPI algorithm is a relatively mature algorithm, but each projection vector in PPI algorithm is generated randomly, and the endmembers extracted by PPI algorithm are not stable. That is, different endmembers can be obtained from the same image by repeatedly running PPI algorithm. This paper, based on the convex geometry description of linear spectral mixing model, utilized the feature that the endmem-bers are the endpoints of the single convex body enclosed in the hyperspectral image feature space, and proposed a novel pure pixel index algorithm for endmember extraction based on the maximum distance. The average of the spectral vectors of all the sample points is calculated and used as the center of a hypersphere. Next, we calcu-late the Euclidean distances of all the sample points to the center of the hypersphere, and design a radius of equal to or greater than the maximum distance for the hypersphere in the feature space to include all of the sample points. We evenly select the reference points on the surface of the hypersphere. The farthest sample point with re-spect to each reference point can be found by calculating the Euclidean distance. Subsequently, every sample point’s frequency of being the most distant to the reference points is recorded as an index to evaluate whether the sample point is an endmember or not. Finally, we use the AVIRIS data of Nevada Cuprite to testify this algo-rithm. The experimental results illustrate that the precision of the endmember extraction using the algorithm pro-posed in this paper is better than N-FINDR algorithm and VCA algorithm in general. Moreover, it has a good ro-bustness and could overcome the instability of PPI algorithm caused by random projection.