纺织高校基础科学学报
紡織高校基礎科學學報
방직고교기출과학학보
BASIC SCIENCES JOURNAL OF TEXTILE UNIVERSITIES
2014年
4期
443-446
,共4页
捕食-食饵模型%上下解%平衡态正解
捕食-食餌模型%上下解%平衡態正解
포식-식이모형%상하해%평형태정해
predator-prey model%upper and low er solution%steady-state solutions
本文研究了一类在齐次Dirichlet边界条件下带有传染病的捕食‐食饵模型。利用上下解方法得到了正解的先验估计;借助分歧理论,以扩散系数 d为分歧参数,构造了发自半平凡解(d;θr ,0)处的平衡解分支,从而给出了模型平衡态正解的存在性。
本文研究瞭一類在齊次Dirichlet邊界條件下帶有傳染病的捕食‐食餌模型。利用上下解方法得到瞭正解的先驗估計;藉助分歧理論,以擴散繫數 d為分歧參數,構造瞭髮自半平凡解(d;θr ,0)處的平衡解分支,從而給齣瞭模型平衡態正解的存在性。
본문연구료일류재제차Dirichlet변계조건하대유전염병적포식‐식이모형。이용상하해방법득도료정해적선험고계;차조분기이론,이확산계수 d위분기삼수,구조료발자반평범해(d;θr ,0)처적평형해분지,종이급출료모형평형태정해적존재성。
A prey‐predator model with infectious disease subjected to homogeneous Dirichlet boundary condition is studied .By using upper and lower solution method ,a priori estimates of positive solutions is got .By means of the bifurcation theory ,steady‐state solutions bifurcating from the semi trivial solution (d;θr ,0) are given by treating the diffusion coefficient d as the bifurcation parameter ,which implies the existence of steady‐state solutions .