智能系统学报
智能繫統學報
지능계통학보
CAAI TRANSACTIONS ON INTELLIGENT SYSTEMS
2014年
6期
756-762
,共7页
调制识别%边际谱%分形理论%支持向量机
調製識彆%邊際譜%分形理論%支持嚮量機
조제식별%변제보%분형이론%지지향량궤
modulation recognition%marginal spectrum%fractal theory%support vector machine
为了提高数字信号调制模式识别在低信噪比下的正确率,根据对边际谱和多重分形理论原理的分析,提出了一种新的基于多重分形理论的特征提取方法。该方法首先引入HHT变换求得样本的边际谱,不同调制模式的边际谱具有明显的差异性,可以利用分形的方法提取边际谱的分形维数作为调制识别的特征参数。最后利用支持向量机分类器进行信号的分类识别。并在求解支持向量机优化问题中,利用通用的粒子群算法确定了最优系数。计算机仿真研究证明,新方法提取的特征能有效地提高识别正确率,具有较好的工程应用性。
為瞭提高數字信號調製模式識彆在低信譟比下的正確率,根據對邊際譜和多重分形理論原理的分析,提齣瞭一種新的基于多重分形理論的特徵提取方法。該方法首先引入HHT變換求得樣本的邊際譜,不同調製模式的邊際譜具有明顯的差異性,可以利用分形的方法提取邊際譜的分形維數作為調製識彆的特徵參數。最後利用支持嚮量機分類器進行信號的分類識彆。併在求解支持嚮量機優化問題中,利用通用的粒子群算法確定瞭最優繫數。計算機倣真研究證明,新方法提取的特徵能有效地提高識彆正確率,具有較好的工程應用性。
위료제고수자신호조제모식식별재저신조비하적정학솔,근거대변제보화다중분형이론원리적분석,제출료일충신적기우다중분형이론적특정제취방법。해방법수선인입HHT변환구득양본적변제보,불동조제모식적변제보구유명현적차이성,가이이용분형적방법제취변제보적분형유수작위조제식별적특정삼수。최후이용지지향량궤분류기진행신호적분류식별。병재구해지지향량궤우화문제중,이용통용적입자군산법학정료최우계수。계산궤방진연구증명,신방법제취적특정능유효지제고식별정학솔,구유교호적공정응용성。
Through the analysis of the marginal spectrum and multifractal theory, a new feature extraction method based on multifractal theory was proposed to improve the accuracy of the digital modulation recognition under the low signal?to?noise ratio. First, the Hilbert?Huang transform was put forward to obtain the marginal spectrum of the samples. There are differences among different modulation modes. The fractal dimensions of the sample after Hil?bert?Huang transform were calculated by the fractal method. Next, the feature was extracted. Finally, the identifica?tion task was solved by using SVM classification machine. In order to determine the optimal coefficient of the sup?port vector machine, a universal particle swarm optimization algorithm was used. The computer simulation results showed that the performance of this feature extracted by the new algorithm efficiently improves the accuracy of mod?ulation recognition and could be feasible to use in engineering applications.