智能系统学报
智能繫統學報
지능계통학보
CAAI TRANSACTIONS ON INTELLIGENT SYSTEMS
2014年
6期
740-746
,共7页
PID控制器%TLBO算法%MTLBO算法%粒子群算法%遗传算法
PID控製器%TLBO算法%MTLBO算法%粒子群算法%遺傳算法
PID공제기%TLBO산법%MTLBO산법%입자군산법%유전산법
proportional-integral-derivative controller%teaching-learning-based optimization%particle swarm optimi-zation%genetic algorithm
为了有效提高PID控制器的性能,提出了一种改进的教与学优化算法( MTLBO),并将MTLBO算法应用到了PID控制器的参数优化。改进的教与学优化算法对TLBO算法中的“教”和“学”分别进行了改进,并引入了一种新的“自我学习”方法,使其有效提高了算法的搜索能力,并成功地将其应用于PID控制器的参数优化整定。通过与基本TLBO算法、粒子群算法和遗传算法相比,MTLBO算法在PID控制器的参数优化中具有优化速度快,求解精度高等优势。
為瞭有效提高PID控製器的性能,提齣瞭一種改進的教與學優化算法( MTLBO),併將MTLBO算法應用到瞭PID控製器的參數優化。改進的教與學優化算法對TLBO算法中的“教”和“學”分彆進行瞭改進,併引入瞭一種新的“自我學習”方法,使其有效提高瞭算法的搜索能力,併成功地將其應用于PID控製器的參數優化整定。通過與基本TLBO算法、粒子群算法和遺傳算法相比,MTLBO算法在PID控製器的參數優化中具有優化速度快,求解精度高等優勢。
위료유효제고PID공제기적성능,제출료일충개진적교여학우화산법( MTLBO),병장MTLBO산법응용도료PID공제기적삼수우화。개진적교여학우화산법대TLBO산법중적“교”화“학”분별진행료개진,병인입료일충신적“자아학습”방법,사기유효제고료산법적수색능력,병성공지장기응용우PID공제기적삼수우화정정。통과여기본TLBO산법、입자군산법화유전산법상비,MTLBO산법재PID공제기적삼수우화중구유우화속도쾌,구해정도고등우세。
In order to enhance the performance of a PID controller, a modified teaching?learning?based optimization ( MTLBO) algorithm is presented and applied to the parameter optimization of the PID controller. The MTLBO algo?rithm modifies the "Teaching" and "Learning" phases, respectively. It is based on the basic teaching?learning?based optimization ( TLBO) method, which introduces a new"self?learning" method. It also improves the searching ability of the TLBO. The MTLBO algorithm is successfully applied to parameter optimization and tuning of the PID controller. In order to demonstrate the performance of the proposed algorithm, the MTLBO method is compared with GA, PSO and TLBO algorithms. The experimental results showed that the MTLBO algorithm has distinct advantages in speed and precision.