天津大学学报
天津大學學報
천진대학학보
JOURNAL OF TIANJIN UNIVERSITY SCIENCE AND TECHNOLOGY
2014年
12期
1088-1094
,共7页
有机朗肯循环%径流式单级汽轮机%等熵效率%绝热指数
有機朗肯循環%徑流式單級汽輪機%等熵效率%絕熱指數
유궤랑긍순배%경류식단급기륜궤%등적효솔%절열지수
organic Rankine cycle(ORC)%single-stage radial turbine%isentropic efficiency%adiabatic index
针对现有的有机朗肯循环(ORC)理论优化研究中指定膨胀部件等熵效率为定值这一分析方法的不足,研究了不同压比和绝热指数对径流式单级汽轮机结构尺寸和等熵效率的影响,为基于该类膨胀部件的 ORC 理论优化研究提供膨胀部件等熵效率的取值依据.结果表明:汽轮机制造条件限制了高绝热指数的工质实现高压比的循环工况;A类情形(绝热指数1.1~1.5)下,汽轮机无量纲结构尺寸大体相同,等熵效率变化规律相似;B类情形(绝热指数1.6~2.3)下,汽轮机无量纲结构尺寸和等熵效率均随绝热指数的变化而明显变化;间隙损失是影响 A 类情形下汽轮机等熵效率变化规律的主要因素;更高的二次流损失和间隙损失是造成B类情形汽轮机等熵效率低于A类情形的主要原因;各个工质工况间汽轮机等熵效率值的差别最大可达15%左右.
針對現有的有機朗肯循環(ORC)理論優化研究中指定膨脹部件等熵效率為定值這一分析方法的不足,研究瞭不同壓比和絕熱指數對徑流式單級汽輪機結構呎吋和等熵效率的影響,為基于該類膨脹部件的 ORC 理論優化研究提供膨脹部件等熵效率的取值依據.結果錶明:汽輪機製造條件限製瞭高絕熱指數的工質實現高壓比的循環工況;A類情形(絕熱指數1.1~1.5)下,汽輪機無量綱結構呎吋大體相同,等熵效率變化規律相似;B類情形(絕熱指數1.6~2.3)下,汽輪機無量綱結構呎吋和等熵效率均隨絕熱指數的變化而明顯變化;間隙損失是影響 A 類情形下汽輪機等熵效率變化規律的主要因素;更高的二次流損失和間隙損失是造成B類情形汽輪機等熵效率低于A類情形的主要原因;各箇工質工況間汽輪機等熵效率值的差彆最大可達15%左右.
침대현유적유궤랑긍순배(ORC)이론우화연구중지정팽창부건등적효솔위정치저일분석방법적불족,연구료불동압비화절열지수대경류식단급기륜궤결구척촌화등적효솔적영향,위기우해류팽창부건적 ORC 이론우화연구제공팽창부건등적효솔적취치의거.결과표명:기륜궤제조조건한제료고절열지수적공질실현고압비적순배공황;A류정형(절열지수1.1~1.5)하,기륜궤무량강결구척촌대체상동,등적효솔변화규률상사;B류정형(절열지수1.6~2.3)하,기륜궤무량강결구척촌화등적효솔균수절열지수적변화이명현변화;간극손실시영향 A 류정형하기륜궤등적효솔변화규률적주요인소;경고적이차류손실화간극손실시조성B류정형기륜궤등적효솔저우A류정형적주요원인;각개공질공황간기륜궤등적효솔치적차별최대가체15%좌우.
With attention to the drawback of specifying expander isentropic efficiency in organic Rankine cycle (ORC)analysis,the structure size and isentropic efficiency of single-stage radial turbine under different pressure ratio and adiabatic index were studied in this paper. Expander isentropic efficiency data were provided for ORC opti-mization based on single-stage radial turbine. The results show that turbine manufacturing conditions limit the working fluid of high adiabatic index to achieve high pressure ratio. In case A(adiabatic index range 1.1—1.5),turbines have obviously the same dimensionless structure size and the isentropic efficiency variation with pressure ratio is similar under different adiabatic index. In case B(adiabatic index range 1.6—2.3),the dimensionless structure size and isen-tropic efficiency change obviously with the change of adiabatic index. Tip clearance losses are the main factors that obviously affect isentropic efficiency variation in case A. Turbines have higher secondary flow losses and tip clearance losses in case B,which lead to lower isentropic efficiency compared to that in case A. In all turbine operating condi-tions,variation in turbine isentropic efficiency can reach about 15%.