计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2014年
12期
245-248
,共4页
室内场景理解%深度数据分割%高斯混合模型%随机抽样一致性算法%Kinect
室內場景理解%深度數據分割%高斯混閤模型%隨機抽樣一緻性算法%Kinect
실내장경리해%심도수거분할%고사혼합모형%수궤추양일치성산법%Kinect
Indoor scene understanding%Depth data segmentation%Gauss mixture model%RANSAC algorithm%Kinect
基于深度图像的室内场景理解是计算机视觉领域中的前沿问题。针对三维室内场景中平面较多的特性,提出一种基于高斯混合模型聚类的深度数据分割方法,实现对场景数据的平面提取。首先将Kinect获取的深度图像数据转换为离散三维数据点云,并对点云数据作去噪和采样处理;在此基础上计算所有点的法向量,利用高斯混合模型对整个三维点云的法向集合聚类,然后利用随机抽样一致性算法对各个聚类进行平面拟合,由每个聚类得到若干平面,最终把整个点云数据分割为一些平面的集合。实验结果表明,该方法得到的分割区域边界准确,分割质量较高。提取出的平面集合为以后的室内对象识别和场景理解工作奠定了较好的基础。
基于深度圖像的室內場景理解是計算機視覺領域中的前沿問題。針對三維室內場景中平麵較多的特性,提齣一種基于高斯混閤模型聚類的深度數據分割方法,實現對場景數據的平麵提取。首先將Kinect穫取的深度圖像數據轉換為離散三維數據點雲,併對點雲數據作去譟和採樣處理;在此基礎上計算所有點的法嚮量,利用高斯混閤模型對整箇三維點雲的法嚮集閤聚類,然後利用隨機抽樣一緻性算法對各箇聚類進行平麵擬閤,由每箇聚類得到若榦平麵,最終把整箇點雲數據分割為一些平麵的集閤。實驗結果錶明,該方法得到的分割區域邊界準確,分割質量較高。提取齣的平麵集閤為以後的室內對象識彆和場景理解工作奠定瞭較好的基礎。
기우심도도상적실내장경리해시계산궤시각영역중적전연문제。침대삼유실내장경중평면교다적특성,제출일충기우고사혼합모형취류적심도수거분할방법,실현대장경수거적평면제취。수선장Kinect획취적심도도상수거전환위리산삼유수거점운,병대점운수거작거조화채양처리;재차기출상계산소유점적법향량,이용고사혼합모형대정개삼유점운적법향집합취류,연후이용수궤추양일치성산법대각개취류진행평면의합,유매개취류득도약간평면,최종파정개점운수거분할위일사평면적집합。실험결과표명,해방법득도적분할구역변계준학,분할질량교고。제취출적평면집합위이후적실내대상식별화장경리해공작전정료교호적기출。
Indoor scene understanding based on depth image is a cutting-edge issue in the field of three-dimensional computer vision.In 3D indoor scenes the planes are quite many, taking this feature into account, we present a Gauss mixture model clustering-based depth data segmentation method, and realise planes extraction from scene data.First, the method converts the depth image data acquired by Kinect into discrete three-dimensional data point cloud, and applies denoising and downsampling treatment on the point cloud data; On this basis, it calculates the normal vectors of all points in entire point cloud, and clusters the normal collection of entire 3D point cloud using Gaussian mixture model;next, it carries out the plane fitting on each clustering with random sampling consensus ( RANSAC) algorithm, gets a couple of planes from each clustering, and eventually segments the whole point cloud data into some sets of planes.Experimental results show that the divided regions using this method have accurate boundaries and the segmentation quality is above normal.The sets of planes extracted from the previous operations will lay a good foundation for the following indoor object recognition and scene understanding.