计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2014年
12期
186-190
,共5页
蒋龙泉%鲁帅%冯瑞%郭跃飞
蔣龍泉%魯帥%馮瑞%郭躍飛
장룡천%로수%풍서%곽약비
植物病虫害%多特征融合%特征包%支持向量机%分类器
植物病蟲害%多特徵融閤%特徵包%支持嚮量機%分類器
식물병충해%다특정융합%특정포%지지향량궤%분류기
Plant pests and diseases%Multi-feature fusion%Bag of Features%Support vector machine%Classification
针对农业领域植物病虫害检测问题,提出一种基于高清视频图像融合特征的支持向量机( SVM)的检测方法,实现农业生产中植物病虫害的快速检测。对每幅植物叶片图像的颜色、HSV、纹理和方向梯度直方图四种特征采用基于特征包的多特征融合方法,形成特征向量,并利用SVM分类器进行训练分类。对单特征与融合特征的SVM分类器性能进行试验比较,所提出的方法具有较高的准确率。
針對農業領域植物病蟲害檢測問題,提齣一種基于高清視頻圖像融閤特徵的支持嚮量機( SVM)的檢測方法,實現農業生產中植物病蟲害的快速檢測。對每幅植物葉片圖像的顏色、HSV、紋理和方嚮梯度直方圖四種特徵採用基于特徵包的多特徵融閤方法,形成特徵嚮量,併利用SVM分類器進行訓練分類。對單特徵與融閤特徵的SVM分類器性能進行試驗比較,所提齣的方法具有較高的準確率。
침대농업영역식물병충해검측문제,제출일충기우고청시빈도상융합특정적지지향량궤( SVM)적검측방법,실현농업생산중식물병충해적쾌속검측。대매폭식물협편도상적안색、HSV、문리화방향제도직방도사충특정채용기우특정포적다특정융합방법,형성특정향량,병이용SVM분류기진행훈련분류。대단특정여융합특정적SVM분류기성능진행시험비교,소제출적방법구유교고적준학솔。
For plant pests and diseases detection issue in agriculture field, we propose a detection method to realise the fast detection of plant pests and diseases in agricultural production, which is based on the SVM with the feature of high-definition video image fusion.For four kinds of features of each plant leaf image, the colour, HSV, texture and directional gradient histogram, the method adopts the bag of features-based multi-features fusion approach to form the eigenvector, and uses SVM classifier to train the classification.The method raised in the paper has higher accuracy rate, this is proved by the comparative test between the SVM classifiers with the function of mono-feature and of fusion feature.