铁道标准设计
鐵道標準設計
철도표준설계
RAILWAY STANDARD DESIGN
2015年
1期
37-41,46
,共6页
钢轨扣件%橡胶%阻尼%结构损耗因子
鋼軌釦件%橡膠%阻尼%結構損耗因子
강궤구건%상효%조니%결구손모인자
Rail fastening%Rubber%Damping%Structural loss factor
为了掌握钢轨扣件减振橡胶中阻尼的分布及其随振幅和频率的变化规律,对减振橡胶元件受压和受剪两种扣件进行了试验研究。建立钢轨扣件减振橡胶非线性弹性力和混合阻尼叠加的动力学模型,完成模型参数识别及结果检验。根据所建立的动力学模型计算各试验工况下的弹性变形能、阻尼耗能和结构损耗因子。分析发现:压缩和剪切两种扣件减振橡胶的阻尼参数随振幅和频率的变化规律相似,弹性变形能、阻尼耗能和结构损耗因子均随振幅的增大而显著增大,而受频率的影响较小。相同工况下,压缩型扣件减振橡胶的结构损耗因子远大于剪切型扣件,说明压缩型扣件在发挥减振功能时,其耗能特性优于剪切型扣件,而隔振特性劣于剪切型扣件。因此,在钢轨扣件创新设计时,可以通过控制减振橡胶压-剪组合变形,来实现扣件隔振和衰减振动能量两功能的均衡发挥,将结构损耗因子作为设计过程中的控制指标。
為瞭掌握鋼軌釦件減振橡膠中阻尼的分佈及其隨振幅和頻率的變化規律,對減振橡膠元件受壓和受剪兩種釦件進行瞭試驗研究。建立鋼軌釦件減振橡膠非線性彈性力和混閤阻尼疊加的動力學模型,完成模型參數識彆及結果檢驗。根據所建立的動力學模型計算各試驗工況下的彈性變形能、阻尼耗能和結構損耗因子。分析髮現:壓縮和剪切兩種釦件減振橡膠的阻尼參數隨振幅和頻率的變化規律相似,彈性變形能、阻尼耗能和結構損耗因子均隨振幅的增大而顯著增大,而受頻率的影響較小。相同工況下,壓縮型釦件減振橡膠的結構損耗因子遠大于剪切型釦件,說明壓縮型釦件在髮揮減振功能時,其耗能特性優于剪切型釦件,而隔振特性劣于剪切型釦件。因此,在鋼軌釦件創新設計時,可以通過控製減振橡膠壓-剪組閤變形,來實現釦件隔振和衰減振動能量兩功能的均衡髮揮,將結構損耗因子作為設計過程中的控製指標。
위료장악강궤구건감진상효중조니적분포급기수진폭화빈솔적변화규률,대감진상효원건수압화수전량충구건진행료시험연구。건립강궤구건감진상효비선성탄성력화혼합조니첩가적동역학모형,완성모형삼수식별급결과검험。근거소건립적동역학모형계산각시험공황하적탄성변형능、조니모능화결구손모인자。분석발현:압축화전절량충구건감진상효적조니삼수수진폭화빈솔적변화규률상사,탄성변형능、조니모능화결구손모인자균수진폭적증대이현저증대,이수빈솔적영향교소。상동공황하,압축형구건감진상효적결구손모인자원대우전절형구건,설명압축형구건재발휘감진공능시,기모능특성우우전절형구건,이격진특성렬우전절형구건。인차,재강궤구건창신설계시,가이통과공제감진상효압-전조합변형,래실현구건격진화쇠감진동능량량공능적균형발휘,장결구손모인자작위설계과정중적공제지표。
To understand the rules of damping distribution and changes in amplitude and frequency of rubber absorber of rail fastening, two kinds of rail fastenings with compressed and sheared rubber absorbers respectively are tested. A nonlinear dynamic model of rubber absorber coupled with nonlinear elastic force and mixed damping in rail fastening is established with model parameters identified and results verified. Elastic deformation energy, damping dissipation energy and structural loss factors are calculated based on the proposed model. The results show that calculated damping parameters of the two rubber absorbers follow the similar rules, the elastic deformation energy, damping dissipation energy and structural loss factor increase rapidly with the increasing of amplitude, and are affected less by frequency. Structural loss factor of the compressed rubber absorber is much bigger than that of sheared rubber absorber under the same experimental condition, which indicates that the compressed rubber absorber has a better damping capacity than that of the sheared rubber absorber, but the sheared rubber absorber has a better capacity of vibration isolation. As a result, vibration isolation and energy dissipation can be balanced through combined deformation of compressed and sheared rubber absorbers to design new rail fastenings, and structural loss factor taken as a control index.