电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2015年
1期
176-181
,共6页
何耀耀%闻才喜%许启发%撖奥洋
何耀耀%聞纔喜%許啟髮%撖奧洋
하요요%문재희%허계발%감오양
温度%概率密度预测%神经网络分位数回归%中期负荷
溫度%概率密度預測%神經網絡分位數迴歸%中期負荷
온도%개솔밀도예측%신경망락분위수회귀%중기부하
temperature%probability density prediction%neural network quantile regression%medium-term load
针对温度因素对中期电力负荷的影响,在现有的神经网络预测、区间预测和概率密度预测方法的基础上,研究在不同分位点上温度和历史负荷对电力系统中期负荷分布规律的影响,提出基于神经网络分位数回归的中期电力负荷概率密度预测方法。根据连续的条件分位数函数预测中期负荷在某天的概率密度,获得更多关于中期负荷预测信息。同时,通过比较在考虑温度因素下和不考虑温度因素下的条件概率密度预测曲线以及峰值对应的点预测值,可以得出,预测当天温度对中期负荷预测有较重要的影响,这为降低中期电力负荷预测的不确定因素提供了更多的决策信息和预测结果。
針對溫度因素對中期電力負荷的影響,在現有的神經網絡預測、區間預測和概率密度預測方法的基礎上,研究在不同分位點上溫度和歷史負荷對電力繫統中期負荷分佈規律的影響,提齣基于神經網絡分位數迴歸的中期電力負荷概率密度預測方法。根據連續的條件分位數函數預測中期負荷在某天的概率密度,穫得更多關于中期負荷預測信息。同時,通過比較在攷慮溫度因素下和不攷慮溫度因素下的條件概率密度預測麯線以及峰值對應的點預測值,可以得齣,預測噹天溫度對中期負荷預測有較重要的影響,這為降低中期電力負荷預測的不確定因素提供瞭更多的決策信息和預測結果。
침대온도인소대중기전력부하적영향,재현유적신경망락예측、구간예측화개솔밀도예측방법적기출상,연구재불동분위점상온도화역사부하대전력계통중기부하분포규률적영향,제출기우신경망락분위수회귀적중기전력부하개솔밀도예측방법。근거련속적조건분위수함수예측중기부하재모천적개솔밀도,획득경다관우중기부하예측신식。동시,통과비교재고필온도인소하화불고필온도인소하적조건개솔밀도예측곡선이급봉치대응적점예측치,가이득출,예측당천온도대중기부하예측유교중요적영향,저위강저중기전력부하예측적불학정인소제공료경다적결책신식화예측결과。
In allusion to the influence of temperature factor on medium-term power load, based on exiting neural network prediction, interval prediction and probability density prediction the influences of temperatures and historical loads at different quantiles on the distribution rule of power system medium-term load is researched and a method to predict neural network quantile regression based medium-term probability density of power load is proposed. According to continuous conditional quantile functions the probability density of medium-term power load on a certain day is predicted to obtain more information related to medium-term power load. Meanwhile, the comparison results of conditional probability density prediction curves, in which the temperature factors are considered and not considered respectively, and the prediction values corresponding to peak load points show that the temperature at the very predicted day evidently influences the predictive result of medium-term power load, so it offers more decision information and prediction results, in which the uncertain factors in medium-term power load prediction are decreased.